Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1105, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907640

RESUMEN

In the brain, many regions work in a network-like association, yet it is not known how durable these associations are in terms of activity and could survive without structural connections. To assess the association or similarity between brain regions with a generating approach, this study evaluated the similarity of activities of neurons within each region after disconnecting between regions. The "generation" approach here refers to using a multi-layer LSTM (Long Short-Term Memory) model to learn the rules of activity generation in one region and then apply that knowledge to generate activity in other regions. Surprisingly, the results revealed that activity generation from one region to disconnected regions was possible with similar accuracy to generation between the same regions in many cases. Notably, firing rates and synchronization of firing between neuron pairs, often used as neuronal representations, could be reproduced with precision. Additionally, accuracies were associated with the relative angle between brain regions and the strength of the structural connections that initially connected them. This outcome enables us to look into trends governing non-uniformity of the cortex based on the potential to generate informative data and reduces the need for animal experiments.


Asunto(s)
Encéfalo , Neuronas , Animales , Neuronas/fisiología , Corteza Cerebral , Aprendizaje
2.
eNeuro ; 10(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37903612

RESUMEN

The brain is an organ that functions as a network of many elements connected in a nonuniform manner. In the brain, the neocortex is evolutionarily newest and is thought to be primarily responsible for the high intelligence of mammals. In the mature mammalian brain, all cortical regions are expected to have some degree of homology, but have some variations of local circuits to achieve specific functions performed by individual regions. However, few cellular-level studies have examined how the networks within different cortical regions differ. This study aimed to find rules for systematic changes of connectivity (microconnectomes) across 16 different cortical region groups. We also observed unknown trends in basic parameters in vitro such as firing rate and layer thickness across brain regions. Results revealed that the frontal group shows unique characteristics such as dense active neurons, thick cortex, and strong connections with deeper layers. This suggests the frontal side of the cortex is inherently capable of driving, even in isolation and that frontal nodes provide the driving force generating a global pattern of spontaneous synchronous activity, such as the default mode network. This finding provides a new hypothesis explaining why disruption in the frontal region causes a large impact on mental health.


Asunto(s)
Neocórtex , Neuronas , Animales , Neuronas/fisiología , Lóbulo Frontal/fisiología , Cabeza , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Imagen por Resonancia Magnética , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA