Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Europace ; 20(9): 1553-1560, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554331

RESUMEN

Aims: The aim of the present study is to develop in vitro experimental analytical method for the electrophysiological properties of allogeneic induced pluripotent stem cell-derived cardiomyocytes (CMs) in cardiac conduction defect model. Methods and results: Cardiomyocytes were derived from rat induced pluripotent stem cells CMs (riPSC-CMs) using an embryoid body-based differentiation method with the serial application of growth factors including activin-A, bone morphogenetic protein 4 (BMP-4), and inhibitor of wnt production 2 (IWP-2). Flow cytometry analysis showed that 74.0 ± 2.7% of riPSC-CMs expressed cardiac troponin-T (n = 3). Immunostaining analysis revealed organized sarcomeric structure in riPSC-CMs and the expression of connexin 43 between riPSC-CMs and neonatal rat ventricular CMs (NRVMs). Ca2+ transient recordings revealed the simultaneous excitement of riPSC-CMs and NRVMs, and prolonged Ca2+ transient duration of riPSC-CMs as compared with NRVMs (731 ± 15.9 vs. 610 ± 7.72 ms, P < 0.01, n = 3). Isolated NRVMs were cultured in two discrete regions to mimic cardiac conduction defects on multi-electrode array dish, and riPSC-CMs were seeded in the channel between the two discrete regions. Membrane potential imaging with di-8-ANEPPS discerned the propagation of the electrical impulse from one NRVM region to the other through a riPSC-CM pathway. This pathway had significantly longer action potential duration as compared with NRVMs. Electrophysiological studies using a multi-electrode array platform demonstrated the longer conduction time and functional refractory period of the riPSC-CM pathway compared with the NRVM pathway. Conclusion: Using an in vitro experimental system to mimic cardiac conduction defect, transplanted allogeneic riPSC-CMs showed electrical coupling between two discrete regions of NRVMs. Electrophysiological testing using our platform will enable electrophysiological screening prior to transplantation of stem cell-derived CMs.


Asunto(s)
Potenciales de Acción/fisiología , Trastorno del Sistema de Conducción Cardíaco/terapia , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/fisiología , Activinas/farmacología , Células Alogénicas , Animales , Animales Recién Nacidos , Benzotiazoles/farmacología , Proteína Morfogenética Ósea 4/farmacología , Proteínas de Unión a Calmodulina/metabolismo , Diferenciación Celular , Conexina 43/metabolismo , Fenómenos Electrofisiológicos , Citometría de Flujo , Ventrículos Cardíacos/citología , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/trasplante , Ratas , Sarcómeros , Trasplante Homólogo
2.
Brain Res ; 1030(2): 193-200, 2004 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-15571669

RESUMEN

The contribution of the rat striatonigral GABAergic system to spatial navigation was investigated in this study. We first tested the effects of ibotenic acid lesions of the striatum on place navigation performance in Morris water maze. Medial but not lateral striatal lesions produced a significant increase of escape latency, and this deficit was clarified as mainly caused by a marked increase of initiation latency rather than of thigmotaxis time (experiment 1). Next we tested the effects of systemic (0.5 mg/kg) and intranigral (2.0 ng/side) administrations of muscimol, a GABA receptor agonist, on the place navigation deficits produced by medial striatal lesions. Systemic muscimol administration significantly ameliorated the increase of initiation latency, while intranigral administration was not sufficiently effective (experiment 2). The results suggest that neural circuits containing medial striatal neurons play an essential role in place navigation performance probably through some movement preparation processes that precede movement execution, and the GABAergic system may be involved in this initiation process, although whether it is the striatonigral GABAergic system that is involved remains unclear.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Neostriado/fisiología , Sustancia Negra/fisiología , Animales , Agonistas de Aminoácidos Excitadores/administración & dosificación , Agonistas del GABA/administración & dosificación , Ácido Iboténico/administración & dosificación , Inyecciones Intravenosas , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Microinyecciones , Muscimol/administración & dosificación , Neostriado/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Percepción Espacial/efectos de los fármacos , Percepción Espacial/fisiología , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Sustancia Negra/efectos de los fármacos , Natación
3.
Biosens Bioelectron ; 49: 270-5, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23774164

RESUMEN

Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases.


Asunto(s)
Potenciales de Acción , Encéfalo/fisiología , Dopaminérgicos/análisis , Dopamina/análisis , Técnicas Electroquímicas/instrumentación , Nanotubos de Carbono/química , Animales , Encéfalo/citología , Química Encefálica , Células Cultivadas , Electrodos , Galvanoplastia , Diseño de Equipo , Límite de Detección , Masculino , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA