Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Metab ; 143(1-2): 108531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39053125

RESUMEN

PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fibroblastos , Liposomas , Manosafosfatos , Fosfotransferasas (Fosfomutasas) , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/metabolismo , Glicosilación/efectos de los fármacos , Manosafosfatos/metabolismo , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Mutación , Células Cultivadas , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo
2.
ACS Omega ; 2(7): 3380-3389, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28782048

RESUMEN

The use of a nanoparticle (NP)-based antitumor drug carrier has been an emerging strategy for selectively delivering the drugs to the tumor area and, thus, reducing the side effects that are associated with a high systemic dose of antitumor drugs. Precise control of drug loading and release is critical so as to maximize the therapeutic index of the NPs. Here, we propose a simple method of synthesizing NPs with tunable drug release while maintaining their loading ability, by varying the polymer matrix density of amine- or carboxyl-functionalized hydrogel NPs. We find that the NPs with a loose matrix released more cisplatin, with up to a 33 times faster rate. Also, carboxyl-functionalized NPs loaded more cisplatin and released it at a faster rate than amine-functionalized NPs. We performed detailed Monte Carlo computer simulations that elucidate the relation between the matrix density and drug release kinetics. We found good agreement between the simulation model and the experimental results for drug release as a function of time. Also, we compared the cellular uptake between amine-functionalized NPs and carboxyl-functionalized NPs, as a higher cellular uptake of NPs leads to improved cisplatin delivery. The amine-functionalized NPs can deliver 3.5 times more cisplatin into cells than the carboxyl-functionalized NPs. The cytotoxic efficacy of both the amine-functionalized NPs and the carboxyl-functionalized NPs showed a strong correlation with the cisplatin release profile, and the latter showed a strong correlation with the NP matrix density.

3.
ACS Macro Lett ; 3(7): 602-606, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25419487

RESUMEN

Improving the therapeutic efficacy and reducing systemic side effects of drugs is an important aspect in chemotherapy. The strategy presented here is the use of cisplatin loaded, temperature-sensitive, hydrogel nanoparticles (CisPt-NPs) and their ability to deliver and release chemodrugs selectively, based on thermal stimuli. The specially synthesized CisPt-NPs show a temperature-dependent increase of cisplatin release, at neutral pH (as in blood and normal tissue), in both the presence and absence of common metallic ions, as well as at the low pH found in lysosomes, where endocytosed NPs often localize. These CisPt-NPs were uptaken by breast cancer MDA-MB-435 cells, via endocytosis, and then mostly localized in the lysosomes. The in vitro cytotoxicity tests show that these CisPt-NPs have a significantly better efficacy at the slightly elevated temperatures. Potential applications are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA