Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992713

RESUMEN

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Asunto(s)
ARN de Transferencia , Animales , Humanos , Ratas , Anticodón , Línea Celular , Codón , Glicosilación , Nucleósido Q/química , Nucleósido Q/genética , Nucleósido Q/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Porcinos , Pez Cebra/metabolismo , Conformación de Ácido Nucleico
2.
Mol Cell ; 81(1): 88-103.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33220178

RESUMEN

The small molecule ISRIB antagonizes the activation of the integrated stress response (ISR) by phosphorylated translation initiation factor 2, eIF2(αP). ISRIB and eIF2(αP) bind distinct sites in their common target, eIF2B, a guanine nucleotide exchange factor for eIF2. We have found that ISRIB-mediated acceleration of eIF2B's nucleotide exchange activity in vitro is observed preferentially in the presence of eIF2(αP) and is attenuated by mutations that desensitize eIF2B to the inhibitory effect of eIF2(αP). ISRIB's efficacy as an ISR inhibitor in cells also depends on presence of eIF2(αP). Cryoelectron microscopy (cryo-EM) showed that engagement of both eIF2B regulatory sites by two eIF2(αP) molecules remodels both the ISRIB-binding pocket and the pockets that would engage eIF2α during active nucleotide exchange, thereby discouraging both binding events. In vitro, eIF2(αP) and ISRIB reciprocally opposed each other's binding to eIF2B. These findings point to antagonistic allostery in ISRIB action on eIF2B, culminating in inhibition of the ISR.


Asunto(s)
Acetamidas/química , Ciclohexilaminas/química , Factor 2B Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/química , Regulación Alostérica , Animales , Sitios de Unión , Células CHO , Cricetulus , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Fosforilación
3.
Nature ; 606(7916): 1027-1031, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35580630

RESUMEN

Around 250 million people are infected with hepatitis B virus (HBV) worldwide1, and 15 million may also carry the satellite virus hepatitis D virus (HDV), which confers even greater risk of severe liver disease2. The HBV receptor has been identified as sodium taurocholate co-transporting polypeptide (NTCP), which interacts directly with the first 48 amino acid residues of the N-myristoylated N-terminal preS1 domain of the viral large protein3. Despite the pressing need for therapeutic agents to counter HBV, the structure of NTCP remains unsolved. This 349-residue protein is closely related to human apical sodium-dependent bile acid transporter (ASBT), another member of the solute carrier family SLC10. Crystal structures have been reported of similar bile acid transporters from bacteria4,5, and these models are believed to resemble closely both NTCP and ASBT. Here we have used cryo-electron microscopy to solve the structure of NTCP bound to an antibody, clearly showing that the transporter has no equivalent of the first transmembrane helix found in other SLC10 proteins, and that the N terminus is exposed on the extracellular face. Comparison of our structure with those of related proteins indicates a common mechanism of bile acid transport, but the NTCP structure displays an additional pocket formed by residues that are known to interact with preS1, presenting new opportunities for structure-based drug design.


Asunto(s)
Ácidos y Sales Biliares , Microscopía por Crioelectrón , Virus de la Hepatitis B , Transportadores de Anión Orgánico Sodio-Dependiente , Receptores Virales , Simportadores , Anticuerpos , Ácidos y Sales Biliares/metabolismo , Virus de la Hepatitis B/metabolismo , Hepatocitos/metabolismo , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/química , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/ultraestructura , Receptores Virales/química , Receptores Virales/metabolismo , Receptores Virales/ultraestructura , Simportadores/química , Simportadores/metabolismo , Simportadores/ultraestructura
4.
Mol Cell ; 74(6): 1205-1214.e8, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31080011

RESUMEN

Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Hepacivirus/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Viral/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Hepacivirus/metabolismo , Interacciones Huésped-Patógeno , Humanos , Sitios Internos de Entrada al Ribosoma , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Viral/genética , ARN Viral/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
5.
Nat Chem Biol ; 20(5): 605-614, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267667

RESUMEN

In response to environmental changes, cells flexibly and rapidly alter gene expression through translational controls. In plants, the translation of NIP5;1, a boric acid diffusion facilitator, is downregulated in response to an excess amount of boric acid in the environment through upstream open reading frames (uORFs) that consist of only AUG and stop codons. However, the molecular details of how this minimum uORF controls translation of the downstream main ORF in a boric acid-dependent manner have remained unclear. Here, by combining ribosome profiling, translation complex profile sequencing, structural analysis with cryo-electron microscopy and biochemical assays, we show that the 80S ribosome assembled at AUG-stop migrates into the subsequent RNA segment, followed by downstream translation initiation, and that boric acid impedes this process by the stable confinement of eukaryotic release factor 1 on the 80S ribosome on AUG-stop. Our results provide molecular insight into translation regulation by a minimum and environment-responsive uORF.


Asunto(s)
Ácidos Bóricos , Biosíntesis de Proteínas , Ribosomas , Ribosomas/metabolismo , Ácidos Bóricos/química , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Microscopía por Crioelectrón , Sistemas de Lectura Abierta , Codón de Terminación , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética
6.
J Biol Chem ; 300(5): 107277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588804

RESUMEN

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.


Asunto(s)
Hidrolasas de Éster Carboxílico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteína Fosfatasa 2 , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Fosforilación , Luciferasas/metabolismo , Luciferasas/genética , Unión Proteica , Células HEK293
7.
J Biol Chem ; 300(7): 107459, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857861

RESUMEN

The dedicator of cytokinesis (DOCK)/engulfment and cell motility (ELMO) complex serves as a guanine nucleotide exchange factor (GEF) for the GTPase Rac. RhoG, another GTPase, activates the ELMO-DOCK-Rac pathway during engulfment and migration. Recent cryo-EM structures of the DOCK2/ELMO1 and DOCK2/ELMO1/Rac1 complexes have identified closed and open conformations that are key to understanding the autoinhibition mechanism. Nevertheless, the structural details of RhoG-mediated activation of the DOCK/ELMO complex remain elusive. Herein, we present cryo-EM structures of DOCK5/ELMO1 alone and in complex with RhoG and Rac1. The DOCK5/ELMO1 structure exhibits a closed conformation similar to that of DOCK2/ELMO1, suggesting a shared regulatory mechanism of the autoinhibitory state across DOCK-A/B subfamilies (DOCK1-5). Conversely, the RhoG/DOCK5/ELMO1/Rac1 complex adopts an open conformation that differs from that of the DOCK2/ELMO1/Rac1 complex, with RhoG binding to both ELMO1 and DOCK5. The alignment of the DOCK5 phosphatidylinositol (3,4,5)-trisphosphate binding site with the RhoG C-terminal lipidation site suggests simultaneous binding of RhoG and DOCK5/ELMO1 to the plasma membrane. Structural comparison of the apo and RhoG-bound states revealed that RhoG facilitates a closed-to-open state conformational change of DOCK5/ELMO1. Biochemical and surface plasmon resonance (SPR) assays confirm that RhoG enhances the Rac GEF activity of DOCK5/ELMO1 and increases its binding affinity for Rac1. Further analysis of structural variability underscored the conformational flexibility of the DOCK5/ELMO1/Rac1 complex core, potentially facilitating the proximity of the DOCK5 GEF domain to the plasma membrane. These findings elucidate the structural mechanism underlying the RhoG-induced allosteric activation and membrane binding of the DOCK/ELMO complex.

8.
J Virol ; 98(5): e0019724, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38593321

RESUMEN

Noroviruses are major causative agents of acute nonbacterial gastroenteritis in humans. There are neither antiviral therapeutic agents nor vaccines for noroviruses at this time. To evaluate the potential usefulness of two previously isolated human monoclonal antibody fragments, CV-1A1 and CV-2F5, we first conducted a single-particle analysis to determine the cryo-electron microscopy structure of virus-like particles (VLPs) from the genogroup I genotype 4 (GI.4) Chiba strain uniformly coated with CV-1A1 fragments. The results revealed that the GI.4-specific CV-1A1 antibody bound to the P2 subdomain, in which amino acids are less conserved and variable. Interestingly, a part of the CV-1A1 intrudes into the histo-blood group antigen-binding site, suggesting that this antibody might exert neutralizing activity. Next, we determined the crystal structure of the protruding (P) domain of the capsid protein in the complex form with the CV-2F5 antibody fragment. Consistent with the cross-reactivity, the CV-2F5 bound to the P1 subdomain, which is rich in amino acids conserved among the GI strains, and moreover induced a disruption of Chiba VLPs. These results suggest that the broadly reactive CV-2F5 antibody can be used as both a universal detection reagent and an antiviral drug for GI noroviruses. IMPORTANCE: We conducted the structural analyses of the VP1 protein from the GI.4 Chiba norovirus to identify the binding sites of the previously isolated human monoclonal antibodies CV-1A1 and CV-2F5. The cryo-electron microscopy of the Chiba virus-like particles (VLPs) complexed with the Fv-clasp forms of GI.4-specific CV-1A1 revealed that this antibody binds to the highly variable P2 subdomain, suggesting that this antibody may have neutralizing ability against the GI.4 strains. X-ray crystallography revealed that the CV-2F5 antibody bound to the P1 subdomain, which is rich in conserved amino acids. This result is consistent with the ability of the CV-2F5 antibody to react with a wide variety of GI norovirus strains. It is also found that the CV-2F5 antibody caused a disruption of VLPs. Our findings, together with previous reports on the structures of VP1 proteins and VLPs, are expected to open a path for the structure-based development of antivirals and vaccines against norovirus disease.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Norovirus , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , Modelos Moleculares , Norovirus/inmunología
9.
Proc Natl Acad Sci U S A ; 119(27): e2123385119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35767641

RESUMEN

Bacterial pathogens acquire heme from the host hemoglobin as an iron nutrient for their virulence and proliferation in blood. Concurrently, they encounter cytotoxic-free heme that escapes the heme-acquisition process. To overcome this toxicity, many gram-positive bacteria employ an ATP-binding cassette heme-dedicated efflux pump, HrtBA in the cytoplasmic membranes. Although genetic analyses have suggested that HrtBA expels heme from the bacterial membranes, the molecular mechanism of heme efflux remains elusive due to the lack of protein studies. Here, we show the biochemical properties and crystal structures of Corynebacterium diphtheriae HrtBA, alone and in complex with heme or an ATP analog, and we reveal how HrtBA extracts heme from the membrane and releases it. HrtBA consists of two cytoplasmic HrtA ATPase subunits and two transmembrane HrtB permease subunits. A heme-binding site is formed in the HrtB dimer and is laterally accessible to heme in the outer leaflet of the membrane. The heme-binding site captures heme from the membrane using a glutamate residue of either subunit as an axial ligand and sequesters the heme within the rearranged transmembrane helix bundle. By ATP-driven HrtA dimerization, the heme-binding site is squeezed to extrude the bound heme. The mechanism sheds light on the detoxification of membrane-bound heme in this bacterium.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Bacterianas , Corynebacterium diphtheriae , Hemo , Proteínas de Transporte de Membrana , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Corynebacterium diphtheriae/enzimología , Hemo/metabolismo , Proteínas de Transporte de Membrana/química , Conformación Proteica , Multimerización de Proteína
10.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197289

RESUMEN

Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.


Asunto(s)
Canales de Cloruro/química , Rayos Láser , Canales de Cloruro/metabolismo , Cristalografía , Citoplasma/metabolismo , Transporte Iónico , Luz , Conformación Proteica , Rayos X
11.
Curr Issues Mol Biol ; 46(4): 3092-3107, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38666924

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. Individuals with ASD may exhibit difficulties in social interactions, communication challenges, repetitive behaviors, and restricted interests. While genetic mutations in individuals with ASD can either activate or inactivate the activities of the gene product, impacting neuronal morphogenesis and causing symptoms, the underlying mechanism remains to be fully established. Herein, for the first time, we report that genetically conserved Rac1 guanine-nucleotide exchange factor (GEF) Dock5 signalosome molecules control process elongation in the N1E-115 cell line, a model line capable of achieving neuronal morphological changes. The increased elongation phenotypes observed in ASD and intellectual disability (ID)-associated Semaphorin-5A (Sema5A) Arg676-to-Cys [p.R676C] were also mediated by Dock5 signalosome molecules. Indeed, knockdown of Dock5 using clustered regularly interspaced short palindromic repeat (CRISPR)/CasRx-based guide(g)RNA specifically recovered the mutated Sema5A-induced increase in process elongation in cells. Knockdown of Elmo2, an adaptor molecule of Dock5, also exhibited similar recovery. Comparable results were obtained when transfecting the interaction region of Dock5 with Elmo2. The activation of c-Jun N-terminal kinase (JNK), one of the primary signal transduction molecules underlying process elongation, was ameliorated by either their knockdown or transfection. These results suggest that the Dock5 signalosome comprises abnormal signaling involved in the process elongation induced by ASD- and ID-associated Sema5A. These molecules could be added to the list of potential therapeutic target molecules for abnormal neuronal morphogenesis in ASD at the molecular and cellular levels.

12.
Cancer Sci ; 115(1): 211-226, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972575

RESUMEN

The tumor microenvironment (TME) consists of cancer cells surrounded by stromal components including tumor vessels. Transforming growth factor-ß (TGF-ß) promotes tumor progression by inducing epithelial-mesenchymal transition (EMT) in cancer cells and stimulating tumor angiogenesis in the tumor stroma. We previously developed an Fc chimeric TGF-ß receptor containing both TGF-ß type I (TßRI) and type II (TßRII) receptors (TßRI-TßRII-Fc), which trapped all TGF-ß isoforms and suppressed tumor growth. However, the precise mechanisms underlying this action have not yet been elucidated. In the present study, we showed that the recombinant TßRI-TßRII-Fc protein effectively suppressed in vitro EMT of oral cancer cells and in vivo tumor growth in a human oral cancer cell xenograft mouse model. Tumor cell proliferation and angiogenesis were suppressed in tumors treated with TßRI-TßRII-Fc. Molecular profiling of human cancer cells and mouse stroma revealed that K-Ras signaling and angiogenesis were suppressed. Administration of TßRI-TßRII-Fc protein decreased the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-1ß (IL-1ß) and epiregulin (EREG) in the TME of oral cancer tumor xenografts. HB-EGF increased proliferation of human oral cancer cells and mouse endothelial cells by activating ERK1/2 phosphorylation. HB-EGF also promoted oral cancer cell-derived tumor formation by enhancing cancer cell proliferation and tumor angiogenesis. In addition, increased expressions of IL-1ß and EREG in oral cancer cells significantly enhanced tumor formation. These results suggest that TGF-ß signaling in the TME controls cancer cell proliferation and angiogenesis by activating HB-EGF/IL-1ß/EREG pathways and that TßRI-TßRII-Fc protein is a promising tool for targeting the TME networks.


Asunto(s)
Neoplasias de la Boca , Proteínas Serina-Treonina Quinasas , Humanos , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina , Células Endoteliales/metabolismo , Microambiente Tumoral , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1 , Neoplasias de la Boca/genética , Factores de Crecimiento Transformadores
13.
Biochem Biophys Res Commun ; 708: 149784, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38503170

RESUMEN

A glycerophosphoethanolamine ethanolaminephosphodiesterase (GPE-EP) from Streptomyces sanglieri hydrolyzes glycerophosphoethanolamine to phosphoethanolamine and glycerol. The structure of GPE-EP was determined by the molecular replacement method using a search model generated with AlphaFold2. This structure includes the entire length of the mature protein and it is composed of an N-terminal domain and a novel C-terminal domain connected to a flexible linker. The N-terminal domain is the catalytic domain containing calcium ions at the catalytic site. Coordination bonds were observed between five amino acid residues and glycerol. Although the function of the C-terminal domain is currently unknown, inter-domain interactions between the N- and C-terminal domains may contribute to its relatively high thermostability.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Streptomyces , Hidrolasas Diéster Fosfóricas/metabolismo , Secuencia de Aminoácidos , Glicerol , Streptomyces/genética , Streptomyces/metabolismo
14.
RNA ; 28(3): 290-302, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906996

RESUMEN

Ribosome pauses are associated with various cotranslational events and determine the fate of mRNAs and proteins. Thus, the identification of precise pause sites across the transcriptome is desirable; however, the landscape of ribosome pauses in bacteria remains ambiguous. Here, we harness monosome and disome (or collided ribosome) profiling strategies to survey ribosome pause sites in Escherichia coli Compared to eukaryotes, ribosome collisions in bacteria showed remarkable differences: a low frequency of disomes at stop codons, collisions occurring immediately after 70S assembly on start codons, and shorter queues of ribosomes trailing upstream. The pause sites corresponded with the biochemical validation by integrated nascent chain profiling (iNP) to detect polypeptidyl-tRNA, an elongation intermediate. Moreover, the subset of those sites showed puromycin resistance, presenting slow peptidyl transfer. Among the identified sites, the ribosome pause at Asn586 of ycbZ was validated by biochemical reporter assay, tRNA sequencing (tRNA-seq), and cryo-electron microscopy (cryo-EM) experiments. Our results provide a useful resource for ribosome stalling sites in bacteria.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Ribosomas/metabolismo , Codón de Terminación , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
15.
Arch Biochem Biophys ; 753: 109926, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346547

RESUMEN

Of the more than 100 families of glycosyltransferases, family 1 glycosyltransferases catalyze glycosylation using uridine diphosphate (UDP)-sugar as a sugar donor and are thus referred to as UDP-sugar:glycosyl transferases. The blue color of the Nemophila menziesii flower is derived from metalloanthocyanin, which consists of anthocyanin, flavone, and metal ions. Flavone 7-O-ß-glucoside-4'-O-ß-glucoside in the plant is sequentially biosynthesized from flavons by UDP-glucose:flavone 4'-O-glucosyltransferase (NmF4'GT) and UDP-glucose:flavone 4'-O-glucoside 7-O-glucosyltransferase (NmF4'G7GT). To identify the molecular mechanisms of glucosylation of flavone, the crystal structures of NmF4'G7GT in its apo form and in complex with UDP-glucose or luteolin were determined, and molecular structure prediction using AlphaFold2 was conducted for NmF4'GT. The crystal structures revealed that the size of the ligand-binding pocket and interaction environment for the glucose moiety at the pocket entrance plays a critical role in the substrate preference in NmF4'G7GT. The substrate specificity of NmF4'GT was examined by comparing its model structure with that of NmF4'G7GT. The structure of NmF4'GT may have a smaller acceptor pocket, leading to a substrate preference for non-glucosylated flavones (or flavone aglycones).


Asunto(s)
Flavonas , Glucosiltransferasas , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Ligandos , Uridina Difosfato Glucosa/química , Glucosa , Glicosiltransferasas , Glucósidos , Especificidad por Sustrato
16.
Nat Chem Biol ; 18(3): 321-331, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35177839

RESUMEN

Disaggregation of amyloid fibrils is a fundamental biological process required for amyloid propagation. However, due to the lack of experimental systems, the molecular mechanism of how amyloid is disaggregated by cellular factors remains poorly understood. Here, we established a robust in vitro reconstituted system of yeast prion propagation and found that heat-shock protein 104 (Hsp104), Ssa1 and Sis1 chaperones are essential for efficient disaggregation of Sup35 amyloid. Real-time imaging of single-molecule fluorescence coupled with the reconstitution system revealed that amyloid disaggregation is achieved by ordered, timely binding of the chaperones to amyloid. Remarkably, we uncovered two distinct prion strain conformation-dependent modes of disaggregation, fragmentation and dissolution. We characterized distinct chaperone dynamics in each mode and found that transient, repeated binding of Hsp104 to the same site of amyloid results in fragmentation. These findings provide a physical foundation for otherwise puzzling in vivo observations and for therapeutic development for amyloid-associated neurodegenerative diseases.


Asunto(s)
Priones , Proteínas de Saccharomyces cerevisiae , Amiloide/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Factores de Terminación de Péptidos/metabolismo , Priones/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Bioorg Med Chem Lett ; 110: 129856, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914346

RESUMEN

The discovery and development of structurally distinct lysine methyltransferase G9a inhibitors have been the subject of intense research in epigenetics. Structure-based optimization was conducted, starting with the previously reported seed compound 7a and lead to the identification of a highly potent G9a inhibitor, compound 7i (IC50 = 0.024 µM). X-ray crystallography for the ligand-protein interaction and kinetics study, along with surface plasmon resonance (SPR) analysis, revealed that compound 7i interacts with G9a in a unique binding mode. In addition, compound 7i caused attenuation of cellular H3K9me2 levels and induction of γ-globin mRNA expression in HUDEP-2 cells in a dose-dependent manner.

18.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33674463

RESUMEN

Biomolecular assemblies govern the physiology of cells. Their function often depends on the changes in molecular arrangements of constituents, both in the positions and orientations. While recent advancements of fluorescence microscopy including super-resolution microscopy have enabled us to determine the positions of fluorophores with unprecedented accuracy, monitoring the orientation of fluorescently labeled molecules within living cells in real time is challenging. Fluorescence polarization microscopy (FPM) reports the orientation of emission dipoles and is therefore a promising solution. For imaging with FPM, target proteins need labeling with fluorescent probes in a sterically constrained manner, but because of difficulties in the rational three-dimensional design of protein connection, a universal method for constrained tagging with fluorophore was not available. Here, we report POLArIS, a genetically encoded and versatile probe for molecular orientation imaging. Instead of using a direct tagging approach, we used a recombinant binder connected to a fluorescent protein in a sterically constrained manner that can target specific biomolecules of interest by combining with phage display screening. As an initial test case, we developed POLArISact, which specifically binds to F-actin in living cells. We confirmed that the orientation of F-actin can be monitored by observing cells expressing POLArISact with FPM. In living starfish early embryos expressing POLArISact, we found actin filaments radially extending from centrosomes in association with microtubule asters during mitosis. By taking advantage of the genetically encoded nature, POLArIS can be used in a variety of living specimens, including whole bodies of developing embryos and animals, and also be expressed in a cell type/tissue specific manner.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Polarización de Fluorescencia/métodos , Colorantes Fluorescentes/metabolismo , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Imagen Molecular/métodos , Estrellas de Mar/embriología , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Células LLC-PK1 , Porcinos
19.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673728

RESUMEN

BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species. While BACH1 is rapidly degraded when it is bound to heme, it remains unclear how BACH1 degradation is regulated under other conditions. We found that FBXO22, a ubiquitin ligase previously reported to promote BACH1 degradation, polyubiquitinated BACH1 only in the presence of heme in a highly purified reconstitution assay. In parallel to this regulatory mechanism, TANK binding kinase 1 (TBK1), a protein kinase that activates innate immune response and regulates iron metabolism via ferritinophagy, was found to promote BACH1 degradation when overexpressed in 293T cells. While TBK1 phosphorylated BACH1 at multiple serine and threonine residues, BACH1 degradation was observed with not only the wild-type TBK1 but also catalytically impaired TBK1. The BACH1 degradation in response to catalytically impaired TBK1 was not dependent on FBXO22 but involved both autophagy-lysosome and ubiquitin-proteasome pathways judging from its suppression by using inhibitors of lysosome and proteasome. Chemical inhibition of TBK1 in hepatoma Hepa1 cells showed that TBK1 was not required for the heme-induced BACH1 degradation. Its inhibition in Namalwa B lymphoma cells increased endogenous BACH1 protein. These results suggest that TBK1 promotes BACH1 degradation in parallel to the FBXO22- and heme-dependent pathway, placing BACH1 as a downstream effector of TBK1 in iron metabolism or innate immune response.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas F-Box , Hemo , Proteínas Serina-Treonina Quinasas , Proteolisis , Receptores Citoplasmáticos y Nucleares , Humanos , Hemo/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Células HEK293 , Ubiquitinación , Línea Celular Tumoral , Lisosomas/metabolismo , Autofagia , Complejo de la Endopetidasa Proteasomal/metabolismo
20.
J Biol Chem ; 298(8): 102164, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35732209

RESUMEN

Acetylated lysine residues (Kac) in histones are recognized by epigenetic reader proteins, such as Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins. Human YEATS domains bind to the acetylated N-terminal tail of histone H3; however, their Kac-binding preferences at the level of the nucleosome are unknown. Through genetic code reprogramming, here, we established a nucleosome core particle (NCP) array containing histones that were acetylated at specific residues and used it to compare the Kac-binding preferences of human YEATS domains. We found that AF9-YEATS showed basal binding to the unmodified NCP and that it bound stronger to the NCP containing a single acetylation at one of K4, K9, K14, or K27 of H3, or to histone H4 multi-acetylated between K5 and K16. Crystal structures of AF9-YEATS in complex with an H4 peptide diacetylated either at K5/K8 or K8/K12 revealed that the aromatic cage of the YEATS domain recognized the acetylated K8 residue. Interestingly, E57 and D103 of AF9, both located outside of the aromatic cage, were shown to interact with acetylated K5 and K12 of H4, respectively, consistent with the increase in AF9-YEATS binding to the H4K8-acetylated NCP upon additional acetylation at K5 or K12. Finally, we show that a mutation of E57 to alanine in AF9-YEATS reduced the binding affinity for H4 multiacetylated NCPs containing H4K5ac. Our data suggest that the Kac-binding affinity of AF9-YEATS increases additively with the number of Kac in the histone tail.


Asunto(s)
Histonas , Nucleosomas , Acetilación , Histonas/metabolismo , Humanos , Lisina/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA