Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Math Biol ; 88(2): 20, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270669

RESUMEN

Predation can both reduce prey abundance directly (through density-dependent effects) and indirectly through prey trait-mediated effects. Over the years, many studies have focused on describing the density-area relationship (DAR). However, the mechanisms responsible for the DAR are not well understood. Loss and fragmentation of habitats, owing to human activities, creates landscape-level spatial heterogeneity wherein patches of varying size, isolation and quality are separated by a human-modified "matrix" of varying degrees of hostility and has been a primary driver of species extinctions and declining biodiversity. How matrix hostility in combination with trait-mediated effects influence DAR, minimum patch size, and species coexistence remains an open question. In this paper, we employ a theoretical spatially explicit predator-prey population model built upon the reaction-diffusion framework to explore effects of predator-induced emigration (trait-mediated emigration) and matrix hostility on DAR, minimum patch size, and species coexistence. Our results show that when trait-mediated response strength is sufficiently strong, ranges of patch size emerge where a nonlinear hump-shaped prey DAR is predicted and other ranges where coexistence is not possible. In a conservation perspective, DAR is crucial not only in deciding whether we should have one large habitat patch or several-small (SLOSS), but for understanding the minimum patch size that can support a viable population. Our study lends more credence to the possibility that predators can alter prey DAR through predator-induced prey dispersal.


Asunto(s)
Biodiversidad , Extinción Biológica , Humanos , Animales , Difusión , Fenotipo , Conducta Predatoria
2.
J Theor Biol ; 557: 111325, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36356943

RESUMEN

A primary driver of species extinctions and declining biodiversity is loss and fragmentation of habitats owing to human activities. Many studies spanning a wide diversity of taxa have described the relationship between population density and habitat patch area, i.e., the density-area relationship (DAR), as positive, neutral, negative or some combination of the three. However, the mechanisms responsible for these relationships remain elusive. We employ a theoretical spatially explicit population model built upon the reaction-diffusion framework with absorbing boundary conditions to model a habitat specialist dwelling in islands of habitat surrounded by a hostile matrix. We consider patches with a convex or non-convex geometry. Our results show that a single species following logistic-type population growth exhibits a strictly positive and continuous DAR. However, when multiple asymptotically stable steady states are preset in the system, a discontinuous DAR arises. In the case of two species governed by diffusive Lotka-Volterra growth and competitive interactions, we observe that overall DAR structure can be either (1) positive, (2) positive for small areas and neutral for large, or (3) hump-shaped, i.e., positive for area below a threshold and negative for area above. Patch complexity such as non-convex geometry can cause discontinuities in DAR slope for a single species and create qualitatively different patterns in a competitive system as compared to a convex patch. We also compared our theoretical results with two empirical studies (Anolis lizards on islands and crossbills and pine squirrels in forest fragments) where the pragmatic view of DAR fails to give a mechanistic understanding of what was observed. Close qualitative agreement between theoretical and observed DAR indicates that our model gives a reasonable explanation of the mechanisms underpinning DAR found in those studies. From a conservation perspective, the DAR is crucial to the identification of valuable habitat fragments that favor high abundance and the design of a reserve for a target species. When it comes to protecting a single species, these results suggest that there is unlikely to be a simple solution and that conservation decisions should always be made on a case-by-case basis.


Asunto(s)
Biodiversidad , Lagartos , Humanos , Animales , Extinción Biológica , Bosques , Densidad de Población
3.
Am Nat ; 195(5): 851-867, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32364785

RESUMEN

Emigration is a fundamental process affecting species' local, regional, and large-scale dynamics. The paradigmatic view in ecology is that emigration is density independent (DIE) or positive density dependent (+DDE). However, alternative forms are biologically plausible, including negative (-DDE), U-shaped (uDDE), and hump-shaped (hDDE) forms. We reviewed the empirical literature to assess the frequency of different forms of density-dependent emigration and whether the form depended on methodology. We also developed a reaction-diffusion model to illustrate how different forms of DDE can affect patch-level population persistence. We found 145 studies, the majority representing DIE (30%) and +DDE (36%). However, we also regularly found -DDE (25%) and evidence for nonlinear DDE (9%), including one case of uDDE and two cases of hDDE. Nonlinear DDE detection is likely hindered by the use of few density levels and small density ranges. Based on our models, DIE and +DDE promoted stable and persistent populations. uDDE and -DDE generated an Allee effect that decreases minimum patch size. Last, -DDE and hDDE models yielded bistability that allows the establishment of populations at lower densities. We conclude that the emigration process can be a diverse function of density in nature and that alternative DDE forms can have important consequences for population dynamics.


Asunto(s)
Migración Animal , Invertebrados/fisiología , Vertebrados/fisiología , Animales , Modelos Biológicos , Densidad de Población , Dinámica Poblacional
4.
Bull Math Biol ; 81(10): 3933-3975, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31264133

RESUMEN

Fragmentation creates landscape-level spatial heterogeneity which in turn influences population dynamics of the resident species. This often leads to declines in abundance of the species due to increased susceptibility to edge effects between the remnant habitat patches and the lower quality "matrix" surrounding these focal patches. In this paper, we formalize a framework to facilitate the connection between small-scale movement and patch-level predictions of persistence through a mechanistic model based on reaction-diffusion equations. The model is capable of incorporating essential information about edge-mediated effects such as patch preference, movement behavior, and matrix-induced mortality. We mathematically analyze the model's predictions of persistence with a general logistic-type growth term and explore their sensitivity to demographic attributes in both the patch and matrix, as well as patch size and geometry. Also, we provide bounds on demographic attributes and patch size in order for the model to predict persistence of a species in a given patch based on assumptions on the patch/matrix interface. Finally, we illustrate the utility of this framework with a well-studied planthopper species (Prokelisia crocea) living in a highly fragmented landscape. Using experimentally derived data from various sources to parameterize the model, we show that, qualitatively, the model results are in accord with experimental predictions regarding minimum patch size of P. crocea. Through application of a sensitivity analysis to the model, we also suggest a ranking of the most important model parameters based on which parameter will cause the largest output variance.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Simulación por Computador , Extinción Biológica , Cadena Alimentaria , Hemípteros/crecimiento & desarrollo , Hemípteros/fisiología , Herbivoria , Humanos , Modelos Logísticos , Conceptos Matemáticos , Movimiento/fisiología , Poaceae , Dinámica Poblacional , Crecimiento Demográfico
5.
Ecol Evol ; 13(11): e10753, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020706

RESUMEN

Movement behavior is central to understanding species distributions, population dynamics and coexistence with other species. Although the relationship between conspecific density and emigration has been well studied, little attention has been paid to how interspecific competitor density affects another species' movement behavior. We conducted releases of two species of competing Tribolium flour beetles at different densities, alone and together in homogeneous microcosms, and tested whether their recaptures-with-distance were well described by a random-diffusion model. We also determined whether mean displacement distances varied with the release density of conspecific and heterospecific beetles. A diffusion model provided a good fit to the redistribution of T. castaneum and T. confusum at all release densities, explaining an average of >60% of the variation in recaptures. For both species, mean displacement (directly proportional to the diffusion rate) exhibited a humped-shaped relationship with conspecific density. Finally, we found that both species of beetle impacted the within-patch movement rates of the other species, but the effect depended on density. For T. castaneum in the highest density treatment, the addition of equal numbers of T. castaneum or T. confusum had the same effect, with mean displacements reduced by approximately one half. The same result occurred for T. confusum released at an intermediate density. In both cases, it was total beetle abundance, not species identity that mattered to mean displacement. We suggest that displacement or diffusion rates that exhibit a nonlinear relationship with density or depend on the presence or abundance of interacting species should be considered when attempting to predict the spatial spread of populations or scaling up to heterogeneous landscapes.

6.
Math Biosci Eng ; 19(12): 13675-13709, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36654063

RESUMEN

Habitat loss and fragmentation is the largest contributing factor to species extinction and declining biodiversity. Landscapes are becoming highly spatially heterogeneous with varying degrees of human modification. Much theoretical study of habitat fragmentation has historically focused on a simple theoretical landscape with patches of habitat surrounded by a spatially homogeneous hostile matrix. However, terrestrial habitat patches are often surrounded by complex mosaics of many different land cover types, which are rarely ecologically neutral or completely inhospitable environments. We employ an extension of a reaction diffusion model to explore effects of heterogeneity in the matrix immediately surrounding a patch in a one-dimensional theoretical landscape. Exact dynamics of a population exhibiting logistic growth, an unbiased random walk in the patch and matrix, habitat preference at the patch/matrix interface, and two functionally different matrix types for the one-dimensional landscape is obtained. These results show existence of a minimum patch size (MPS), below which population persistence is not possible. This MPS can be estimated via empirically derived estimates of patch intrinsic growth rate and diffusion rate, habitat preference, and matrix death and diffusion rates. We conclude that local matrix heterogeneity can greatly change model predictions, and argue that conservation strategies should not only consider patch size, configuration, and quality, but also quality and spatial structure of the surrounding matrix.


Asunto(s)
Ecosistema , Modelos Teóricos , Humanos , Dinámica Poblacional , Extinción Biológica
7.
Math Biosci Eng ; 17(6): 7838-7861, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33378923

RESUMEN

Even though mutualistic interactions are ubiquitous in nature, we are still far from making good predictions about the fate of mutualistic communities under threats such as habitat fragmentation and climate change. Fragmentation often causes declines in abundance of a species due to increased susceptibility to edge effects between remnant habitat patches and lower quality "matrix" surrounding these focal patches. It has been argued that ecological communities are replete with trait-mediated indirect effects, and that these effects may sometimes contribute more to the dynamics of a population than direct density-mediated effects, e.g., lowering an organism's fitness through competitive interactions. Although some studies have focused on trait-mediated behavior such as trait-mediated dispersal, in which an organism changes its dispersal patterns due to the presence of another species, they have been mostly limited to predator-prey systems-little is known regarding their effect on other interaction systems such as mutualism. Here, we explore consequences of fragmentation and trait-mediated dispersal on coexistence of a system of two mutualists by employing a model built upon the reaction diffusion framework. To distinguish between trait-mediated dispersal and density-mediated effects, we isolate effects of trait-mediated dispersal on the mutualistic system by excluding any direct density-mediated effects in the model. Our results demonstrate that fragmentation and trait-mediated dispersal can have important impacts on coexistence of mutualists. Specifically, one species can be better able to invade and persist than the other and be crucial to the success of the other species in the patch. Matrix quality degradation can also bring about a complete reversal of the role of which species is supporting the other's persistence in the patch, even as the patch size remains constant. As most mutualistic relationships are identified based on density-mediated effects, such an effect may be easily overlooked.


Asunto(s)
Modelos Biológicos , Simbiosis , Ecosistema , Dinámica Poblacional
8.
Math Biosci Eng ; 17(2): 1718-1742, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-32233604

RESUMEN

The relationship between conspecific density and the probability of emigrating from a patch can play an essential role in determining the population-dynamic consequences of an Allee effect. In this paper, we model a population that inside a patch is diffusing and growing according to a weak Allee effect per-capita growth rate, but the emigration probability is dependent on conspecific density. The habitat patch is one-dimensional and is surrounded by a tuneable hostile matrix. We consider five different forms of density dependent emigration (DDE) that have been noted in previous empirical studies. Our models predict that at the patch-level, DDE forms that have a positive slope will counteract Allee effects, whereas, DDE forms with a negative slope will enhance them. Also, DDE can have profound effects on the dynamics of a population, including producing very complicated population dynamics with multiple steady states whose density profile can be either symmetric or asymmetric about the center of the patch. Our results are obtained mathematically through the method of subsuper solutions, time map analysis, and numerical computations using Wolfram Mathematica.

9.
J Math Biol ; 52(6): 807-29, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16521024

RESUMEN

We study the positive steady state distributions and dynamical behavior of reaction-diffusion equation with weak allele effect type growth, in which the growth rate per capita is not monotonic as in logistic type, and the habitat is assumed to be a heterogeneous bounded region. The existence of multiple steady states is shown, and the global bifurcation diagrams are obtained. Results are applied to a reaction-diffusion model with type II functional response, and also a model with density-dependent diffusion of animal aggregation.


Asunto(s)
Ambiente , Modelos Biológicos , Modelos Estadísticos , Dinámica Poblacional , Animales , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA