Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Virol ; 97(2): e0000923, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744961

RESUMEN

Mammalian orthoreovirus serotype 3 Dearing is an oncolytic virus currently undergoing multiple clinical trials as a potential cancer therapy. Previous clinical trials have emphasized the importance of prescreening patients for prognostic markers to improve therapeutic success. However, only generic cancer markers such as epidermal growth factor receptor (EGFR), Hras, Kras, Nras, Braf, and p53 are currently utilized, with limited benefit in predicting therapeutic efficacy. This study aimed to investigate the role of p38 mitogen-activated protein kinase (MAPK) signaling during reovirus infection. Using a panel of specific p38 MAPK inhibitors and an inactive inhibitor analogue, p38 MAPK signaling was found to be essential for establishment of reovirus infection by enhancing reovirus endocytosis, facilitating efficient reovirus uncoating at the endo-lysosomal stage, and augmenting postuncoating replication steps. Using a broad panel of human breast cancer cell lines, susceptibility to reovirus infection corresponded with virus binding and uncoating efficiency, which strongly correlated with status of the p38ß isoform. Together, results suggest p38ß isoform as a potential prognostic marker for early stages of reovirus infection that are crucial to successful reovirus infection. IMPORTANCE The use of Pelareorep (mammalian orthoreovirus) as a therapy for metastatic breast cancer has shown promising results in recent clinical trials. However, the selection of prognostic markers to stratify patients has had limited success due to the fact that these markers are upstream receptors and signaling pathways that are present in a high percentage of cancers. This study demonstrates that the mechanism of action of p38 MAPK signaling plays a key role in establishment of reovirus infection at both early entry and late replication steps. Using a panel of breast cancer cell lines, we found that the expression levels of the MAPK11 (p38ß) isoform are a strong determinant of reovirus uncoating and infection establishment. Our findings suggest that selecting prognostic markers that target key steps in reovirus replication may improve patient stratification during oncolytic reovirus therapy.


Asunto(s)
Neoplasias de la Mama , Orthoreovirus Mamífero 3 , Infecciones por Reoviridae , Internalización del Virus , Proteínas Quinasas p38 Activadas por Mitógenos , Femenino , Humanos , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Orthoreovirus Mamífero 3/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Replicación Viral , Línea Celular Tumoral
2.
J Virol ; 97(10): e0082823, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37747236

RESUMEN

IMPORTANCE: Reoviruses infect many mammals and are widely studied as a model system for enteric viruses. However, most of our reovirus knowledge comes from laboratory strains maintained on immortalized L929 cells. Herein, we asked whether naturally circulating reoviruses possess the same genetic and phenotypic characteristics as laboratory strains. Naturally circulating reoviruses obtained from sewage were extremely diverse genetically. Moreover, sewage reoviruses exhibited poor fitness on L929 cells and relied heavily on gut proteases for viral uncoating and productive infection compared to laboratory strains. We then examined how naturally circulating reoviruses might adapt to cell culture conditions. Within three passages, virus isolates from the parental sewage population were selected, displaying improved fitness and intracellular uncoating in L929 cells. Remarkably, selected progeny clones were present at 0.01% of the parental population. Altogether, using reovirus as a model, our study demonstrates how the high genetic diversity of naturally circulating viruses results in rapid adaptation to new environments.


Asunto(s)
Adaptación Fisiológica , Aptitud Genética , Genoma Viral , Interacciones Microbiota-Huesped , Péptido Hidrolasas , Reoviridae , Desencapsidación Viral , Animales , Ratones , Genoma Viral/genética , Genómica , Células L , Péptido Hidrolasas/metabolismo , Reoviridae/clasificación , Reoviridae/genética , Reoviridae/metabolismo , Pase Seriado , Aguas del Alcantarillado/virología
3.
PLoS Pathog ; 18(9): e1010641, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36099325

RESUMEN

Reoviridae virus family members, such as mammalian orthoreovirus (reovirus), encounter a unique challenge during replication. To hide the dsRNA from host recognition, the genome remains encapsidated in transcriptionally active proteinaceous core capsids that transcribe and release +RNA. De novo +RNAs and core proteins must repeatedly assemble into new progeny cores in order to logarithmically amplify replication. Reoviruses also produce outercapsid (OC) proteins µ1, σ3 and σ1 that assemble onto cores to create highly stable infectious full virions. Current models of reovirus replication position amplification of transcriptionally-active cores and assembly of infectious virions in shared factories, but we hypothesized that since assembly of OC proteins would halt core amplification, OC assembly is somehow regulated. Kinetic analysis of virus +RNA production, core versus OC protein expression, and core particles versus whole virus particle accumulation, indicated that assembly of OC proteins onto core particles was temporally delayed. All viral RNAs and proteins were made simultaneously, eliminating the possibility that delayed OC RNAs or proteins account for delayed OC assembly. High resolution fluorescence and electron microscopy revealed that core amplification occurred early during infection at peripheral core-only factories, while all OC proteins associated with lipid droplets (LDs) that coalesced near the nucleus in a µ1-dependent manner. Core-only factories transitioned towards the nucleus despite cycloheximide-mediated halting of new protein expression, while new core-only factories developed in the periphery. As infection progressed, OC assembly occurred at LD-and nuclear-proximal factories. Silencing of OC µ1 expression with siRNAs led to large factories that remained further from the nucleus, implicating µ1 in the transition to perinuclear factories. Moreover, late during infection, +RNA pools largely contributed to the production of de-novo viral proteins and fully-assembled infectious viruses. Altogether the results suggest an advanced model of reovirus replication with spatiotemporal segregation of core amplification, OC complexes and fully assembled virions.


Asunto(s)
Reoviridae , Animales , Proteínas de la Cápside/metabolismo , Línea Celular , Cicloheximida , Cinética , Mamíferos , ARN Viral/genética , Reoviridae/genética , Reoviridae/metabolismo , Proteínas Virales , Ensamble de Virus
4.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658345

RESUMEN

Wild type reovirus serotype 3 'Dearing PL strain' (T3wt) is being heavily evaluated as an oncolytic and immunotherapeutic treatment for cancers. Mutations that promote reovirus entry into tumor cells were previously reported to enhance oncolysis; herein we aimed to discover mutations that enhance the post-entry steps of reovirus infection in tumor cells. Using directed evolution, we identified that reovirus variant T3v10M1 exhibited enhanced replication relative to T3wt on a panel of cancer cells. T3v10M1 contains an alanine-to-valine substitution (A612V) in the core-associated µ2, which was previously found to have NTPase activities in virions and to facilitate virus factory formation by association with µNS. Paradoxically, the A612V mutation in µ2 from T3v10M1 was discovered to impair NTPase activities and RNA synthesis, leading to five-fold higher probability of abortive infection for T3v10M1 relative to T3wt. The A612V mutation resides in a previously uncharacterized C-terminal region that juxtaposes the template entry site of the polymerase µ2; our findings thus support an important role for this domain during virus transcription. Despite crippled onset of infection, T3v10M1 exhibited greater accumulation of viral proteins and progeny during replication, leading to increased overall virus burst size. Both Far-Western and co-immunoprecipitation approaches corroborated that the A612V mutation in µ2 increased association with the non-structural virus protein µNS and enhances burst size. Altogether the data supports that mutations in the C-terminal loop domain of µ2 inversely regulate NTPase and RNA synthesis versus interactions with µNS, but with a net gain of replication in tumorigenic cells.SIGNIFICANCEReovirus is a model system for understanding virus replication but also a clinically relevant virus for cancer therapy. We identified the first mutation that increases reovirus infection in tumorigenic cells by enhancing post-entry stages of reovirus replication. The mutation is in a previously uncharacterized c-terminal region of the M1-derived µ2 protein, which we demonstrated affects multiple functions of µ2; NTPase, RNA synthesis, inhibition of antiviral immune response and association with the virus replication factory-forming µNS protein. These findings promote a mechanistic understanding of viral protein functions. In the future, the benefits of µ2 mutations may be useful for enhancing reovirus potency in tumors.

5.
PLoS Pathog ; 16(9): e1008803, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32956403

RESUMEN

The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.


Asunto(s)
Proteínas de la Cápside/metabolismo , Interferones/metabolismo , Polimorfismo Genético , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Ácido Retinoico/metabolismo , Infecciones por Reoviridae/virología , Replicación Viral , Proteínas de la Cápside/genética , Citocinas , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Orthoreovirus de los Mamíferos/fisiología , ARN Bicatenario/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Receptores de Ácido Retinoico/genética , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/metabolismo , Transducción de Señal
6.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31776267

RESUMEN

Reovirus serotype 3 Dearing (T3D) replicates preferentially in transformed cells and is in clinical trials as a cancer therapy. Laboratory strains of T3D, however, exhibit differences in plaque size on cancer cells and differences in oncolytic activity in vivo This study aimed to determine why the most oncolytic T3D reovirus lab strain, the Patrick Lee laboratory strain (T3DPL), replicates more efficiently in cancer cells than other commonly used laboratory strains, the Kevin Coombs laboratory strain (T3DKC) and Terence Dermody laboratory (T3DTD) strain. In single-step growth curves, T3DPL titers increased at higher rates and produced ∼9-fold higher burst size. Furthermore, the number of reovirus antigen-positive cells increased more rapidly for T3DPL than for T3DTD In conclusion, the most oncolytic T3DPL possesses replication advantages in a single round of infection. Two specific mechanisms for enhanced infection by T3DPL were identified. First, T3DPL exhibited higher cell attachment, which was attributed to a higher proportion of virus particles with insufficient (≤3) σ1 cell attachment proteins. Second, T3DPL transcribed RNA at rates superior to those of the less oncolytic T3D strains, which is attributed to polymorphisms in M1-encoding µ2 protein, as confirmed in an in vitro transcription assay, and which thus demonstrates that T3DPL has an inherent transcription advantage that is cell type independent. Accordingly, T3DPL established rapid onset of viral RNA and protein synthesis, leading to more rapid kinetics of progeny virus production, larger virus burst size, and higher levels of cell death. Together, these results emphasize the importance of paying close attention to genomic divergence between virus laboratory strains and, mechanistically, reveal the importance of the rapid onset of infection for reovirus oncolysis.IMPORTANCE Reovirus serotype 3 Dearing (T3D) is in clinical trials for cancer therapy. Recently, it was discovered that highly related laboratory strains of T3D exhibit large differences in their abilities to replicate in cancer cells in vitro, which correlates with oncolytic activity in a murine model of melanoma. The current study reveals two mechanisms for the enhanced efficiency of T3DPL in cancer cells. Due to polymorphisms in two viral genes, within the first round of reovirus infection, T3DPL binds to cells more efficiency and more rapidly produces viral RNAs; this increased rate of infection relative to that of the less oncolytic strains gives T3DPL a strong inherent advantage that culminates in higher virus production, more cell death, and higher virus spread.


Asunto(s)
Orthoreovirus Mamífero 3/genética , Virus Oncolíticos/genética , Animales , Proteínas de la Cápside/genética , Adhesión Celular/genética , Línea Celular , Genes Virales/genética , Humanos , Cinética , Orthoreovirus Mamífero 3/metabolismo , Ratones , Viroterapia Oncolítica/métodos , Polimorfismo Genético/genética , Reoviridae/genética , Infecciones por Reoviridae/genética , Transcripción Genética/genética , Proteínas Virales/metabolismo , Virión/metabolismo , Replicación Viral/genética
7.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31748391

RESUMEN

Little is known about how genetic variations in viruses affect their success as therapeutic agents. The type 3 Dearing strain of Mammalian orthoreovirus (T3D) is undergoing clinical trials as an oncolytic virotherapy. Worldwide, studies on reovirus oncolysis use T3D stocks propagated in different laboratories. Here, we report that genetic diversification among T3D stocks from various sources extensively impacts oncolytic activity. The T3D strain from the Patrick Lee laboratory strain (TD3PL) showed significantly stronger oncolytic activities in a murine model of melanoma than the strain from the Terence Dermody laboratory (T3DTD). Overall in vitro replication and cytolytic properties of T3D laboratory strains were assessed by measuring virus plaque size on a panel of human and mouse tumor cells, and results were found to correlate with in vivo oncolytic potency in a melanoma model. T3DPL produced larger plaques than T3DTD and than the T3D strain from the ATCC (T3DATCC) and from the Kevin Coombs laboratory (T3DKC). Reassortant and reverse genetics analyses were used to decipher key genes and polymorphisms that govern enhanced plaque size of T3DPL Five single amino acid changes in the S4, M1, and L3 genome segments of reovirus were each partially correlated with plaque size and when combined were able to fully account for differences between T3DPL and T3DTD Moreover, polymorphisms were discovered in T3DTD that promoted virus replication and spread in tumors, and a new T3DPL/T3DTD hybrid was generated with enhanced plaque size compared to that of T3DPL Altogether, single amino acid changes acquired during laboratory virus propagation can have a large impact on reovirus therapeutic potency and warrant consideration as possible confounding variables between studies.IMPORTANCE The reovirus serotype 3 Dearing (T3D) strain is in clinical trials for cancer therapy. We find that closely related laboratory strains of T3D exhibit large differences in their abilities to replicate in cancer cells in vitro, which correlates with oncolytic activity in a in a murine model of melanoma. The study reveals that five single amino acid changes among three reovirus genes strongly impact reovirus therapeutic potency. In general, the findings suggest that attention should be given to genomic divergence of virus strains during research and optimization for cancer therapy.


Asunto(s)
Orthoreovirus Mamífero 3/genética , Viroterapia Oncolítica/métodos , Replicación Viral/genética , Aminoácidos/genética , Animales , Línea Celular , Línea Celular Tumoral , Femenino , Variación Genética/genética , Humanos , Orthoreovirus Mamífero 3/metabolismo , Ratones , Ratones Endogámicos C57BL , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/metabolismo , Filogenia , Reoviridae/genética , Proteínas Virales/metabolismo
8.
Nucleic Acids Res ; 47(5): 2681-2698, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30726994

RESUMEN

Most eukaryotic expression systems make use of host-cell nuclear transcriptional and post-transcriptional machineries. Here, we present the first generation of the chimeric cytoplasmic capping-prone phage polymerase (C3P3-G1) expression system developed by biological engineering, which generates capped and polyadenylated transcripts in host-cell cytoplasm by means of two components. First, an artificial single-unit chimeric enzyme made by fusing an mRNA capping enzyme and a DNA-dependent RNA polymerase. Second, specific DNA templates designed to operate with the C3P3-G1 enzyme, which encode for the transcripts and their artificial polyadenylation. This system, which can potentially be adapted to any in cellulo or in vivo eukaryotic expression applications, was optimized for transient expression in mammalian cells. C3P3-G1 shows promising results for protein production in Chinese Hamster Ovary (CHO-K1) cells. This work also provides avenues for enhancing the performances for next generation C3P3 systems.


Asunto(s)
Núcleo Celular/genética , Citoplasma/genética , ARN Polimerasas Dirigidas por ADN/genética , Transcripción Genética , Animales , Células CHO , Cricetulus , Citoplasma/química , ARN Polimerasas Dirigidas por ADN/química , Células Eucariotas/química , Células Eucariotas/metabolismo , Humanos , Poli A/genética , Poliadenilación/genética
9.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462562

RESUMEN

Reovirus is undergoing clinical testing as an oncolytic therapy for breast cancer. Given that reovirus naturally evolved to thrive in enteric environments, we sought to better understand how breast tumor microenvironments impinge on reovirus infection. Reovirus was treated with extracellular extracts generated from polyomavirus middle T-antigen-derived mouse breast tumors. Unexpectedly, these breast tumor extracellular extracts inactivated reovirus, reducing infectivity of reovirus particles by 100-fold. Mechanistically, inactivation was attributed to proteolytic cleavage of the viral cell attachment protein σ1, which diminished virus binding to sialic acid (SA)-low tumor cells. Among various specific protease class inhibitors and metal ions, EDTA and ZnCl2 effectively modulated σ1 cleavage, indicating that breast tumor-associated zinc-dependent metalloproteases are responsible for reovirus inactivation. Moreover, media from MCF7, MB468, MD-MB-231, and HS578T breast cancer cell lines recapitulated σ1 cleavage and reovirus inactivation, suggesting that inactivation of reovirus is shared among mouse and human breast cancers and that breast cancer cells by themselves can be a source of reovirus-inactivating proteases. Binding assays and quantification of SA levels on a panel of cancer cells showed that truncated σ1 reduced virus binding to cells with low surface SA. To overcome this restriction, we generated a reovirus mutant with a mutation (T249I) in σ1 that prevents σ1 cleavage and inactivation by breast tumor-associated proteases. The mutant reovirus showed similar replication kinetics in tumorigenic cells, toxicity equivalent to that of wild-type reovirus in a severely compromised mouse model, and increased tumor titers. Overall, the data show that tumor microenvironments have the potential to reduce infectivity of reovirus.IMPORTANCE We demonstrate that metalloproteases in breast tumor microenvironments can inactivate reovirus. Our findings expose that tumor microenvironment proteases could have a negative impact on proteinaceous cancer therapies, such as reovirus, and that modification of such therapies to circumvent inactivation by tumor metalloproteases merits consideration.


Asunto(s)
Proteínas de la Cápside/metabolismo , Infecciones por Reoviridae/metabolismo , Replicación Viral/genética , Células A549 , Animales , Neoplasias de la Mama/terapia , Neoplasias de la Mama/virología , Proteínas de la Cápside/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Femenino , Células HeLa , Humanos , Metaloproteasas/metabolismo , Ratones , Mutación , Ácido N-Acetilneuramínico/metabolismo , Viroterapia Oncolítica/métodos , Receptores Virales/metabolismo , Reoviridae/metabolismo , Reoviridae/patogenicidad , Infecciones por Reoviridae/inmunología , Microambiente Tumoral/fisiología , Proteínas Virales/metabolismo , Acoplamiento Viral , Replicación Viral/fisiología
10.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31597761

RESUMEN

Rotavirus is a segmented double-stranded RNA (dsRNA) virus that causes severe gastroenteritis in young children. We have established an efficient simplified rotavirus reverse genetics (RG) system that uses 11 T7 plasmids, each expressing a unique simian SA11 (+)RNA, and a cytomegalovirus support plasmid for the African swine fever virus NP868R capping enzyme. With the NP868R-based system, we generated recombinant rotavirus (rSA11/NSP3-FL-UnaG) with a genetically modified 1.5-kb segment 7 dsRNA encoding full-length nonstructural protein 3 (NSP3) fused to UnaG, a 139-amino-acid green fluorescent protein (FP). Analysis of rSA11/NSP3-FL-UnaG showed that the virus replicated efficiently and was genetically stable over 10 rounds of serial passaging. The NSP3-UnaG fusion product was well expressed in rSA11/NSP3-FL-UnaG-infected cells, reaching levels similar to NSP3 levels in wild-type recombinant SA11-infected cells. Moreover, the NSP3-UnaG protein, like functional wild-type NSP3, formed dimers in vivo Notably, the NSP3-UnaG protein was readily detected in infected cells via live-cell imaging, with intensity levels ∼3-fold greater than those of the NSP1-UnaG fusion product of rSA11/NSP1-FL-UnaG. Our results indicate that FP-expressing recombinant rotaviruses can be made through manipulation of the segment 7 dsRNA without deletion or interruption of any of the 12 open reading frames (ORFs) of the virus. Because NSP3 is expressed at higher levels than NSP1 in infected cells, rotaviruses expressing NSP3-based FPs may be more sensitive tools for studying rotavirus biology than rotaviruses expressing NSP1-based FPs. This is the first report of a recombinant rotavirus containing a genetically engineered segment 7 dsRNA.IMPORTANCE Previous studies generated recombinant rotaviruses that express FPs by inserting reporter genes into the NSP1 ORF of genome segment 5. Unfortunately, NSP1 is expressed at low levels in infected cells, making viruses expressing FP-fused NSP1 less than ideal probes of rotavirus biology. Moreover, FPs were inserted into segment 5 in such a way as to compromise NSP1, an interferon antagonist affecting viral growth and pathogenesis. We have identified an alternative approach for generating rotaviruses expressing FPs, one relying on fusing the reporter gene to the NSP3 ORF of genome segment 7. This was accomplished without interrupting any of the viral ORFs, yielding recombinant viruses that likely express the complete set of functional viral proteins. Given that NSP3 is made at moderate levels in infected cells, rotaviruses encoding NSP3-based FPs should be more sensitive probes of viral infection than rotaviruses encoding NSP1-based FPs.


Asunto(s)
Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Genética Inversa/métodos , Rotavirus/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Regulación Viral de la Expresión Génica , Genes Reporteros , Genes Virales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Moleculares , Sistemas de Lectura Abierta , Plásmidos , ARN Bicatenario/genética , ARN Viral/genética , Infecciones por Rotavirus/virología , Replicación Viral
11.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28298603

RESUMEN

Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5' nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid µ1 protein to µ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation.IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure.


Asunto(s)
Virus de la Fiebre Porcina Africana/enzimología , Nucleotidiltransferasas/metabolismo , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/fisiología , ARN Viral/metabolismo , Virión/fisiología , Ensamble de Virus , Virus de la Fiebre Porcina Africana/genética , Línea Celular , Proteínas Recombinantes de Fusión/metabolismo , Genética Inversa , Virión/genética , Replicación Viral
12.
J Virol ; 89(8): 4319-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653434

RESUMEN

UNLABELLED: Wild-type mammalian orthoreovirus serotype 3 Dearing (T3wt) is nonpathogenic in humans but preferentially infects and kills cancer cells in culture and demonstrates promising antitumor activity in vivo. Using forward genetics, we previously isolated two variants of reovirus, T3v1 and T3v2, with increased infectivity toward a panel of cancer cell lines and improved in vivo oncolysis in a murine melanoma model relative to that of T3wt. Our current study explored how mutations in T3v1 and T3v2 promote infectivity. Reovirions contain trimers of σ1, the reovirus cell attachment protein, at icosahedral capsid vertices. Quantitative Western blot analysis showed that purified T3v1 and T3v2 virions had ∼ 2- and 4-fold-lower levels of σ1 fiber than did T3wt virions. Importantly, using RNA interference to reduce σ1 levels during T3wt production, we were able to generate wild-type reovirus with reduced levels of σ1 per virion. As σ1 levels were reduced, virion infectivity increased by 2- to 5-fold per cell-bound particle, demonstrating a causal relationship between virion σ1 levels and the infectivity of incoming virions. During infection of tumorigenic L929 cells, T3wt, T3v1, and T3v2 uncoated the outer capsid proteins σ3 and µ1C at similar rates. However, having started with fewer σ1 molecules, a complete loss of σ1 was achieved sooner for T3v1 and T3v2. Distinct from intracellular uncoating, chymotrypsin digestion, as a mimic of natural enteric infection, resulted in more rapid σ3 and µ1C removal, unique disassembly intermediates, and a rapid loss of infectivity for T3v1 and T3v2 compared to T3wt. Optimal infectivity toward natural versus therapeutic niches may therefore require distinct reovirus structures and σ1 levels. IMPORTANCE: Wild-type reovirus is currently in clinical trials as a potential cancer therapy. Our molecular studies on variants of reovirus with enhanced oncolytic activity in vitro and in vivo now show that distinct reovirus structures promote adaptation toward cancer cells and away from conditions that mimic natural routes of infection. Specifically, we found that reovirus particles with fewer molecules of the cell attachment protein σ1 became more infectious toward transformed cells. Reduced σ1 levels conferred a benefit to incoming particles only, resulting in an earlier depletion of σ1 and a higher probability of establishing productive infection. Conversely, reovirus variants with fewer σ1 molecules showed reduced stability and infectivity and distinct disassembly when exposed to conditions that mimic natural intestinal proteolysis. These findings support a model where the mode of infection dictates the precise optimum of reovirus structure and provide a molecular rationale for considering alternative reovirus structures during oncolytic therapy.


Asunto(s)
Adaptación Biológica/genética , Proteínas de la Cápside/metabolismo , Orthoreovirus Mamífero 3/genética , Virus Oncolíticos/genética , Virión/metabolismo , Internalización del Virus , Animales , Western Blotting , Proteínas de la Cápside/genética , Línea Celular Tumoral , Quimotripsina , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Inmunoprecipitación , Orthoreovirus Mamífero 3/patogenicidad , Ratones , Mutación/genética , Virus Oncolíticos/patogenicidad , Interferencia de ARN
13.
Mol Ther ; 21(2): 338-47, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23299799

RESUMEN

Immunosuppression associated with ovarian cancer (OC) and resultant peritoneal carcinomatosis (PC) hampers the efficacy of many promising treatment options, including immunotherapies. It is hypothesized that oncolytic virus-based therapies can simultaneously kill OC and mitigate immunosuppression. Currently, reovirus-based anticancer therapy is undergoing phase I/II clinical trials for the treatment of OC. Hence, this study was focused on characterizing the effects of reovirus therapy on OC and associated immune microenvironment. Our data shows that reovirus efficiently killed OC cells and induced higher expression of the molecules involved in antigen presentation including major histocompatibility complex (MHC) class I, ß2-microglobulin (ß2M), TAP-1, and TAP-2. In addition, in the presence of reovirus, dendritic cells (DCs) overcame the OC-mediated phenotypic suppression and successfully stimulated tumor-specific CD8+ T cells. In animal studies, reovirus targeted local and distal OC, alleviated the severity of PC and significantly prolonged survival. These therapeutic effects were accompanied by decreased frequency of suppressive cells, e.g., Gr1.1+, CD11b+ myeloid derived suppressor cells (MDSCs), and CD4+, CD25+, FOXP3+ Tregs, tumor-infiltration of CD3+ cells and higher expression of Th1 cytokines. Finally, reovirus therapy during early stages of OC also resulted in the postponement of PC development. This report elucidates timely information on a therapeutic approach that can target OC through clinically desired multifaceted mechanisms to better the outcomes.


Asunto(s)
Carcinoma/terapia , Inmunomodulación , Viroterapia Oncolítica/métodos , Neoplasias Ováricas/terapia , Neoplasias Peritoneales/terapia , Reoviridae/genética , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Microambiente Celular , Citocinas/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Femenino , Vectores Genéticos , Humanos , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reoviridae/inmunología
14.
Sci Rep ; 14(1): 5156, 2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431749

RESUMEN

We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Poliadenilación , Animales , Humanos , Ratones , ARN Polimerasas Dirigidas por ADN/genética , ARN Mensajero/metabolismo , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , Poli A/genética , Poli A/metabolismo
15.
Mol Ther Oncol ; 32(2): 200798, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38595982

RESUMEN

[This corrects the article DOI: 10.1016/j.omto.2023.100743.].

16.
J Virol ; 86(13): 7403-13, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22532697

RESUMEN

Reovirus preferentially replicates in transformed cells and is being explored as a cancer therapy. Immunological and physical barriers to virotherapy inspired a quest for reovirus variants with enhanced oncolytic potency. Using a classical genetics approach, we isolated two reovirus variants (T3v1 and T3v2) with superior replication relative to wild-type reovirus serotype 3 Dearing (T3wt) on various human and mouse tumorigenic cell lines. Unique mutations in reovirus λ2 vertex protein and σ1 cell attachment protein were associated with the large plaque-forming phenotype of T3v1 and T3v2, respectively. Both T3v1 and T3v2 exhibited higher infectivity (i.e., a higher PFU-to-particle ratio) than T3wt. A detailed analysis of virus replication revealed that virus cell binding and uncoating were equivalent for variant and wild-type reoviruses. However, T3v1 and T3v2 were significantly more efficient than T3wt in initiating productive infection. Thus, when cells were infected with equivalent input virus particles, T3v1 and T3v2 produced significantly higher levels of early viral RNAs relative to T3wt. Subsequent steps of virus replication (viral RNA and protein synthesis, virus assembly, and cell death) were equivalent for all three viruses. In a syngeneic mouse model of melanoma, both T3v1 and T3v2 prolonged mouse survival compared to wild-type reovirus. Our studies reveal that oncolytic potency of reovirus can be improved through distinct mutations that increase the infectivity of reovirus particles.


Asunto(s)
Proteínas de la Cápside/genética , Orthoreovirus Mamífero 3/patogenicidad , Mutación , Nucleotidiltransferasas/genética , Virus Oncolíticos/patogenicidad , Proteínas del Núcleo Viral/genética , Factores de Virulencia/genética , Replicación Viral , Animales , Proteínas de la Cápside/metabolismo , Modelos Animales de Enfermedad , Orthoreovirus Mamífero 3/genética , Melanoma/mortalidad , Melanoma/terapia , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleotidiltransferasas/metabolismo , Virus Oncolíticos/genética , Análisis de Secuencia de ADN , Análisis de Supervivencia , Proteínas del Núcleo Viral/metabolismo , Carga Viral , Ensayo de Placa Viral , Factores de Virulencia/metabolismo
17.
Mol Ther Oncolytics ; 31: 100743, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38033400

RESUMEN

Wild-type reovirus serotype 3 Dearing (T3wt), a non-pathogenic intestinal virus, has shown promise as a cancer therapy in clinical trials, but it would benefit from an increased potency. Given that T3wt is naturally adapted to the intestinal environment (rather than tumors), we genetically modified reovirus to improve its infectivity in cancer cells. Various reovirus mutants were created, and their oncolytic potency was evaluated in vitro using plaque size as a measure of virus fitness in cancer cells. Notably, Super Virus 5 (SV5), carrying five oncolytic mutations, displayed the largest plaques in breast cancer cells among the mutants tested, indicating the potential for enhancing oncolytic potency through the combination of mutations. Furthermore, in a HER2+ murine breast cancer model, mice treated with SV5 exhibited superior tumor reduction and increased survival compared with those treated with PBS or T3wt. Intriguingly, SV5 did not replicate faster than T3wt in cultured cells but demonstrated a farther spread relative to T3wt, attributed to its reduced attachment to cancer cells. These findings highlight the significance of increased virus spread as a crucial mechanism for improving oncolytic virus activity. Thus, genetic modifications of reovirus hold the potential for augmenting its efficacy in cancer therapy.

18.
Viruses ; 15(7)2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37515198

RESUMEN

In this Special Issue of Viruses, we showcase some of the fascinating and diverse virology being undertaken in Canada that was presented at the 4th Symposium of the Canadian Society for Virology 2022 [...].


Asunto(s)
Virus , Canadá , Virus/genética , Virología
19.
Front Mol Biosci ; 9: 831091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155581

RESUMEN

Oncolytic viruses (OVs) are a promising type of cancer therapy since they selectively replicate in tumor cells without damaging healthy cells. Many oncolytic viruses have progressed to human clinical trials, however, their performance as monotherapy has not been as successful as expected. Importantly, recent literature suggests that the oncolytic potential of these viruses can be further increased by genetically modifying the viruses. In this review, we describe genetic modifications to OVs that improve their ability to kill tumor cells directly, to dismantle the tumor microenvironment, or to alter tumor cell signaling and enhance anti-tumor immunity. These advances are particularly important to increase virus spread and reduce metastasis, as demonstrated in animal models. Since metastasis is the principal cause of mortality in cancer patients, having OVs designed to target metastases could transform cancer therapy. The genetic alterations reported to date are only the beginning of all possible improvements to OVs. Modifications described here could be combined together, targeting multiple processes, or with other non-viral therapies with potential to provide a strong and lasting anti-tumor response in cancer patients.

20.
Viruses ; 13(2)2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668598

RESUMEN

RNAs with methylated cap structures are present throughout multiple domains of life. Given that cap structures play a myriad of important roles beyond translation, such as stability and immune recognition, it is not surprising that viruses have adopted RNA capping processes for their own benefit throughout co-evolution with their hosts. In fact, that RNAs are capped was first discovered in a member of the Spinareovirinae family, Cypovirus, before these findings were translated to other domains of life. This review revisits long-past knowledge and recent studies on RNA capping among members of Spinareovirinae to help elucidate the perplex processes of RNA capping and functions of RNA cap structures during Spinareovirinae infection. The review brings to light the many uncertainties that remain about the precise capping status, enzymes that facilitate specific steps of capping, and the functions of RNA caps during Spinareovirinae replication.


Asunto(s)
Caperuzas de ARN/metabolismo , ARN Viral/metabolismo , Infecciones por Reoviridae/virología , Reoviridae/genética , Animales , Humanos , Caperuzas de ARN/química , Caperuzas de ARN/genética , Procesamiento Postranscripcional del ARN , ARN Viral/química , ARN Viral/genética , Reoviridae/química , Reoviridae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA