RESUMEN
The development of the first enantioselective transition-metal-catalyzed allylic alkylation providing access to acyclic products bearing vicinal all-carbon quaternary centers is disclosed. The iridium-catalyzed allylic alkylation reaction proceeds with excellent yields and selectivities for a range of malononitrile-derived nucleophiles and trisubstituted allylic electrophiles. The utility of these sterically congested products is explored through a series of diverse chemo- and diastereoselective product transformations to afford a number of highly valuable, densely functionalized building blocks, including those containing vicinal all-carbon quaternary stereocenters.
Asunto(s)
Compuestos Alílicos/síntesis química , Carbono/química , Iridio/química , Alquilación , Compuestos Alílicos/química , Catálisis , Estructura Molecular , EstereoisomerismoRESUMEN
Rapid access to enantioenriched spirocycles possessing a 1,4-dicarbonyl moiety spanning an all-carbon quaternary stereogenic spirocenter was achieved using a masked bromomethyl vinyl ketone reagent. The developed protocol entails an enantioselective palladium-catalyzed allylic alkylation reaction followed by a one-pot unmasking/RCM sequence that provides access to the spirocyclic compounds in good yields and selectivities.
RESUMEN
The first highly enantioselective iridium-catalyzed allylic alkylation that provides access to products bearing an allylic all-carbon quaternary stereogenic center has been developed. The reaction utilizes a masked acyl cyanide (MAC) reagent, which enables the one-pot preparation of α-quaternary carboxylic acids, esters, and amides with a high degree of enantioselectivity. The utility of these products is further explored through a series of diverse product transformations.
Asunto(s)
Compuestos Alílicos/química , Ácidos Carboxílicos/síntesis química , Iridio/química , Alquilación , Ácidos Carboxílicos/química , Catálisis , Estructura Molecular , EstereoisomerismoRESUMEN
The development of the first enantio-, diastereo-, and regioselective iridium-catalyzed allylic alkylation reaction of prochiral enolates to form an all-carbon quaternary stereogenic center with an aliphatic-substituted allylic electrophile is disclosed. The reaction proceeds with good to excellent selectivity with a range of substituted tetralone-derived nucleophiles furnishing products bearing a newly formed vicinal tertiary and all-carbon quaternary stereodyad. The utility of this protocol is further demonstrated via a number of synthetically diverse product transformations.
Asunto(s)
Alquenos/química , Compuestos Alílicos/química , Iridio/química , Tetralonas/síntesis química , Alquilación , Catálisis , Estructura Molecular , Estereoisomerismo , Tetralonas/químicaRESUMEN
Increasing the efficiency of the drug discovery process is a challenge faced by drug hunters everywhere. One strategy medicinal chemists employ to meet this challenge is learning from knowledge sources within and beyond their organization. In this Perspective, we discuss the evolution of mechanisms for medicinal chemistry knowledge capture and sharing at Merck & Co. over the past 15 years. We describe our approach to knowledge management and report on the multiple enduring and complementary teams and initiatives we have created to capture and share knowledge within a geographically diverse medicinal chemistry community. In addition, this Perspective will share the benefits we have observed and also reflect on what has allowed our efforts to be both successful and sustainable.
Asunto(s)
Química Farmacéutica , Descubrimiento de DrogasRESUMEN
Our lab has long been interested in the development of methods for the creation of enantioenriched all-carbon quaternary stereocenters. Historically, our interest has centered on palladium-catalyzed allylic alkylation, though recent efforts have moved to include the study of iridium catalysts. Whereas palladium catalysts enable the preparation of isolated stereocenters, the use of iridium catalysts allows for the direct construction of vicinal stereocenters via an enantio-, diastereo-, and regioselective allylic alkylation. This account details the evolution of our research program from inception, which focused on the first iridium-catalyzed allylic alkylation to prepare stereodyads containing a single quaternary center, to our most recent discovery that allows for the synthesis of vicinal quaternary centers.
RESUMEN
The first enantioselective iridium-catalyzed allylic alkylation reaction of a masked acyl cyanide (MAC) reagent has been developed. The transformation allows for the use of an umpoled synthon, which serves as a carbon monoxide equivalent. The reaction proceeds with good yield and excellent selectivity up to gram scale for a wide range of substituted allylic electrophiles, delivering products amenable to the synthesis of highly desirable, enantioenriched vinylated α-aryl carbonyl derivatives.
RESUMEN
This account describes our laboratory's efforts in the development of a palladium-catalyzed asymmetric conjugate addition of arylboronic acids to cyclic conjugate acceptors. Specifically, we highlight the study of this transformation in the following areas: (a) construction of all-carbon quaternary stereocenters, (b) elucidation of the reaction mechanism,
RESUMEN
A catalytic, enantioselective formal synthesis of (+)-dichroanone and (+)-taiwaniaquinone H is reported. The all-carbon quaternary stereocenter was constructed by asymmetric conjugate addition catalyzed by a palladium(II) (S)-tert-butylpyridinooxazoline complex. The unexpected formation of a [3.2.1] bicyclic intermediate required the identification of a new route. Analysis of the Hammett constants for para-substituted arenes enabled the rational design of a highly enantioselective conjugate addition substrate that led to the completion of the formal synthesis.