Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39068609

RESUMEN

The process of wound healing consists of multiple phases, and any disruptions in these phases can lead to the wound becoming chronic and impose heavy financial and psychological costs on the patient and a huge economic burden on the country's healthcare system. Various treatments such as drugs, matrix and scaffolds, blood products, cell therapy, and a combination of these treatments are used for wound healing. The use of mesenchymal stem cells (MSCs) is one of these methods that have produced appropriate responses in the healing of patients' wounds. MSCs by secreting growth factors, cytokines, chemokines, and RNAs elicit changes in cell proliferation, migration, growth, signaling, immunomodulation, and wound re-epithelialization process, and as a result, accelerate wound closure and wound healing. These cells can be isolated from different body sources with different cell characteristics and used directly on the wound site or by injection. In addition, MSCs-derived exosomes have attracted growing attention due to circumventing concerns relating to the direct use of MSCs. To increase the performance of MSCs, they can be used together with other compounds such as platelets, matrices, or scaffolds. This study examined the functions of MSCs in wound healing, as well as the vesicles they secrete, cellular and molecular mechanisms, and combined treatments with MSCs for wound healing.

2.
Arch Bone Jt Surg ; 4(3): 248-52, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27517071

RESUMEN

BACKGROUND: Some studies have previously shown that geometry of proximal femur can affect the probability of fracture and type of fracture. It happens since the geometry of the proximal femur determines how a force is applied to its different parts. In this study, we have compared proximal femur's geometric characteristics in femoral neck (FNF), intertrochanteric (ITF) and Subtrochanteric (STF) fractures. METHODS: In this study, 60 patients who had hip fractures were studied as case studies. They were divided into FNF, ITF and STF groups based on their fracture types (20 patients in each group). Patients were studied with x-ray radiography and CT scans. Radiological parameters including femoral neck length from lateral cortex to center of femoral head (FNL), diameter of femoral head (FHD), diameter of femoral neck (FND), femoral head neck offset (FHNO), neck-shaft angle (alpha), femoral neck anteversion (beta) were measured and compared in all three groups. RESULTS: Amount of FNL was significantly higher in STF group compared to FNF (0.011) while ITF and STF as well as FNT and ITF did not show a significant different. Also, FND in FNF group was significantly lower than the other two groups, i.e. ITF and STF. In other cases there were no instances of significant statistical difference. CONCLUSION: Hip geometry can be used to identify individuals who are at the risk of fracture with special pattern. Also, it is important to have more studies in different populations and more in men.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA