Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190482, 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33161854

RESUMEN

All four giant planets are encircled by distinctive systems of rings and small, inner satellites. These all reside within or near their central planet's Roche limit, the rough boundary within which bodies held together by self-gravity will be disrupted by tidal forces. However, the similarities of the four ring-moon systems end here; in most other regards, they are remarkably diverse. We study these systems for three key reasons: (1) for the information they reveal about the properties, history and ongoing evolution of the planetary systems of which they are a part; (2) as dynamical analogues for other astrophysical systems such as protoplanetary disks; and (3) for the wealth of fascinating properties and origin scenarios that make them worthy of study in their own right. The inner Uranus system is characterized by 10 narrow rings, some quite dense, as well as a variety of more tenuous structures. These are accompanied by 13 known moons all orbiting interior to Miranda. Nine of these, Bianca through Perdita, comprise the most densely packed set of moons in the solar system, with orbits so close that their interactions appear to drive chaos over time scales approximately 106 years. Neptune has five named rings, all optically thin, interleaved with seven inner moons. The most notable feature is a set of arcs embedded within the Adams ring; two of these arcs have been stable for time scales of decades. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

2.
Sci Adv ; 9(29): eadg3724, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478185

RESUMEN

Ganymede is the only satellite in the solar system known to have an intrinsic magnetic field. Interactions between this field and the Jovian magnetosphere are expected to funnel most of the associated impinging charged particles, which radiolytically alter surface chemistry across the Jupiter system, to Ganymede's polar regions. Using observations obtained with JWST as part of the Early Release Science program exploring the Jupiter system, we report the discovery of hydrogen peroxide, a radiolysis product of water ice, specifically constrained to the high latitudes. This detection directly implies radiolytic modification of the polar caps by precipitation of Jovian charged particles along partially open field lines within Ganymede's magnetosphere. Stark contrasts between the spatial distribution of this polar hydrogen peroxide, those of Ganymede's other radiolytic oxidants, and that of hydrogen peroxide on neighboring Europa have important implications for understanding water-ice radiolysis throughout the solar system.

3.
Science ; 364(6445)2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31196983

RESUMEN

Saturn's rings are an accessible exemplar of an astrophysical disk, tracing the Saturn system's dynamical processes and history. We present close-range remote-sensing observations of the main rings from the Cassini spacecraft. We find detailed sculpting of the rings by embedded masses, and banded texture belts throughout the rings. Saturn-orbiting streams of material impact the F ring. There are fine-scaled correlations among optical depth, spectral properties, and temperature in the B ring, but anticorrelations within strong density waves in the A ring. There is no spectral distinction between plateaux and the rest of the C ring, whereas the region outward of the Keeler gap is spectrally distinct from nearby regions. These results likely indicate that radial stratification of particle physical properties, rather than compositional differences, is responsible for producing these ring structures.

4.
Science ; 351(6279): 1284-93, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26989245

RESUMEN

NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

5.
Science ; 332(6030): 711-3, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454755

RESUMEN

Jupiter's main ring shows vertical corrugations reminiscent of those recently detected in the rings of Saturn. The Galileo spacecraft imaged a pair of superimposed ripple patterns in 1996 and again in 2000. These patterns behave as two independent spirals, each winding up at a rate defined by Jupiter's gravity field. The dominant pattern originated between July and October 1994, when the entire ring was tilted by about 2 kilometers. We associate this with the Shoemaker-Levy 9 impacts of July 1994. New Horizons images still show this pattern 13 years later and suggest that subsequent events may also have tilted the ring. Impacts by comets or their dust streams are regular occurrences in planetary rings, altering them in ways that remain detectable decades later.

6.
Sci Am ; 286(2): 64-73, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11828702
7.
Science ; 317(5846): 1888-90, 2007 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-17717152

RESUMEN

The rings of Uranus are oriented edge-on to Earth in 2007 for the first time since their 1977 discovery. This event provides a rare opportunity to observe their dark (unlit) side, where dense rings darken to near invisibility, but faint rings become much brighter. We present a ground-based infrared image of the unlit side of the rings that shows that the system has changed dramatically since previous views. A broad cloud of faint material permeates the system but is not correlated with the well-known narrow rings or with the embedded dust belts imaged by the Voyager spacecraft. Although some differences can be explained by the unusual viewing angle, we conclude that the dust distribution within the system has changed substantially since the 1986 Voyager encounter and that it occurs on much larger scales than has been seen in other planetary systems.

8.
Science ; 318(5848): 232-4, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17932287

RESUMEN

The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role.

9.
Science ; 311(5763): 973-7, 2006 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-16373533

RESUMEN

Deep exposures of Uranus taken with the Hubble Space Telescope reveal two small moons and two faint rings. All of them orbit outside of Uranus's previously known (main) ring system but are interior to the large, classical moons. The outer new moon, U XXVI Mab, orbits at roughly twice the radius of the main rings and shares its orbit with a dust ring. The second moon, U XXVII Cupid, orbits just interior to the satellite Belinda. A second ring falls between the orbits of Portia and Rosalind, in a region with no known source bodies. Collectively, these constitute a densely packed, rapidly varying, and possibly unstable dynamical system.

10.
Science ; 312(5770): 92-4, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16601188

RESUMEN

We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings.


Asunto(s)
Polvo Cósmico , Urano , Hielo
11.
Science ; 310(5752): 1287-8, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16311324
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA