Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biochem Mol Toxicol ; 36(11): e23187, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35920545

RESUMEN

Lung cancer, one of the most common cancer is a cause of concern associated with cancer-related mortality. Benzo[a]pyrene [B(a)P], a potent carcinogen as well as an environmental contaminant is reported to be found in cigarette smoke among various sources. The present study focuses on the chemopreventive potential of Diosmin against B[a]P-induced lung carcinogenesis and its possible mechanism in male Swiss Albino mice (SAM). SAM were treated orally with Diosmin (200 mg/kg b.w.) for 16 weeks and/or B[a]P (50 mg/kg b.w) for a period of 4 weeks. B[a]P treated cancerous mice showed increased peroxidation of membrane lipid as well as a decrease in the level/activity of antioxidant proteins. Cancerous mice also showed an increased level of carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE). Diosmin treatment, however, leads to decreased peroxidation of lipids, increased antioxidant proteins as well decrease in the level of CEA and NSE. B[a]P-induced cancerous animals also exhibited increased expression of cyclic AMP response element-binding protein (CREB), COX2 as well as prostaglandin-E2 (PGE2) while Diosmin-treated mice were found to have an ameliorative effect. Histopathological results further confirm the protective effect of Diosmin in averting B[a]P-induced pathological alterations of lung tissue. Overall, our results suggest Diosmin exerts its chemopreventive potential possibly via targeting the CREB/cyclooxygenase-2 (COX-2)/PGE2 pathway thereby repressing inflammation.


Asunto(s)
Diosmina , Neoplasias Pulmonares , Masculino , Ratones , Animales , Benzo(a)pireno/toxicidad , Diosmina/efectos adversos , Diosmina/metabolismo , Antígeno Carcinoembrionario/metabolismo , Antioxidantes/farmacología , Dinoprostona/metabolismo , Pulmón/metabolismo , Carcinogénesis , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/metabolismo , Ciclooxigenasa 2/metabolismo
2.
Environ Toxicol ; 37(9): 2153-2166, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35567572

RESUMEN

1,2-Dimethylhydrazine (DMH), a colon-specific environmental toxicant is one among the carcinogen responsible for the cause of colon cancer. The present study was designed to evaluate the protective effect of Hesperetin (HST) against colon toxicity induced by DMH in Wistar rats. HST, a flavonoid widely found in citrus fruits possesses several biological activities including anti-microbial, anti-oxidant properties among others. A single dose of DMH (40 mg/kg body weight) was administered subcutaneously on 1st day for induction of colon toxicity followed by oral treatment with HST at a dose of 20 mg/kg bodyweight for 14 consecutive days. DMH administration leads to excessive ROS generation, resulting in an imbalance in redox homeostasis and causing membrane lipid peroxidation, which is also partly due to the decrease in the level of tissue antioxidant machinery. Our result showed HST significantly ameliorates DMH-induced lipid peroxidation and also substantially increases the activity/level of various anti-oxidant proteins (GR, GPx, GST, GSH, and SOD). HST was also found to reduce the expression of inflammatory proteins (TNF-α, IL-6, i-NOS, COX-2, NF-kB-p65), goblet cell disintegration as well as mucin depletion (sulfo and sialomucin) in the colon that was found to be elevated upon administration of DMH. Our histological results further provide confirmation of the protective role of HST against DMH-induced pathological alterations. The results of the present study demonstrate supplementation of HST is beneficial in ameliorating DMH-induced toxicity by suppressing oxidative stress, inflammation, goblet cell disintegration as well mucin depletion in the colon of Wistar rats.


Asunto(s)
Neoplasias del Colon , Hesperidina , Estrés Oxidativo , 1,2-Dimetilhidrazina/toxicidad , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Colon/metabolismo , Neoplasias del Colon/patología , Glutatión/metabolismo , Hesperidina/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Mucinas/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
3.
Phytother Res ; 35(4): 2171-2184, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33350534

RESUMEN

1,2 Dimethyl hydrazine (DMH), a cogent environmental toxicant, targets the colon. Previous reports suggest that DMH-mediated dysregulation of the Wnt/ß-catenin pathway plays a vital role in the initial events of colon carcinogenesis. Our study was designed to investigate the effect of quercetin on DMH-mediated colon cancer by targeting adenomatous polyposis coli (APC) and ß-catenin in Wistar rats. Animals were pretreated orally with quercetin at doses of either 25 or 50 mg/kg bodyweight (bw) and DMH at a dose of 20 mg/kg bw subcutaneously up to the 15th week and sacrificed after the 30th week. DMH administration leads to reactive oxygen species generation, resulting in an imbalance in redox homeostasis and causing membrane lipid peroxidation, which is also partly due to the decrease in the level of tissue antioxidant machinery. Increased inflammatory and proliferative proteins were observed in DMH-induced colon cancerous rats. DMH treatment also led to dysregulation in the apoptotic pathway with decreased Bax:Bcl-2 ratio. Quercetin pretreatment ameliorates DMH-induced proliferation, activities of detoxifying enzymes, and putative early markers (mucin depletion and goblet cell disintegration) in colonic tissue. It also significantly regulates APC and ß-catenin expression and inhibits tumor incidence and multiplicity. Histological results further confirm the beneficial role of quercetin in averting DMH-induced pathological alterations.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Quercetina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , beta Catenina/metabolismo , Animales , Neoplasias del Colon/patología , Femenino , Humanos , Quercetina/farmacología , Ratas , Ratas Wistar
4.
Environ Toxicol ; 35(6): 652-664, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31925992

RESUMEN

1,2-Dimethylhydrazine (DMH), an environmental toxicant specifically targets the colon. The present study was aimed to evaluate the efficacy of gallic acid (GA) against colon toxicity induced by DMH in Wistar rats. GA, a phenolic acid has numerous beneficial properties, which include antiviral, antifungal and antioxidant properties which help cells to overcome oxidative stress and balance the redox homeostasis. GA was administered orally at two doses (25 and 50 mg/kg body weight) once daily for 14 days and a single dose (40 mg/kg body weight) of DMH was administered subcutaneously on 14th day. Animals were sacrificed on the 15th day and we could find that GA at both the doses significantly ameliorates DMH-induced increased toxicity markers and also substantially increases the glutathione content level and activities of detoxifying enzymes. It also ameliorates the expression of proliferation, inflammation, apoptosis, goblet cell disintegration, and mucin depletion in the colon that was elevated upon administration of DMH. Histological alterations provide further confirmation of the protective role of GA against DMH-induced colon toxicity. The results of this study clearly indicate supplementation of GA is beneficial in ameliorating DMH-induced oxidative stress, inflammation, proliferation, apoptosis, mucin depletion, and goblet cell disintegration in colon of Wistar rats.


Asunto(s)
1,2-Dimetilhidrazina/toxicidad , Antiinflamatorios/toxicidad , Proliferación Celular/efectos de los fármacos , Ácido Gálico/farmacología , Células Caliciformes/efectos de los fármacos , Mucinas/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Glutatión/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/patología , Inflamación , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
5.
Environ Toxicol ; 35(7): 747-757, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32061149

RESUMEN

Diosmin, a naturally occurring flavonoid commonly present in citrus fruit, is known to exhibit anti-inflammatory, antimutagenic, antioxidant, and free radical scavenging as well as blood lipid lowering activities among others. Diosmin has also been used for the treatment of various diseases including diabetes mellitus and Alzheimer's disease. Our study explores the role of Diosmin in pulmonary toxicity (lung injury) induced by environmental contaminant benzo(a)pyrene [B(a)P]. Swiss Albino Mice (SAM) were administered with either Diosmin 100 or 200 mg/kg body weight daily for 14 days and then challenged with a single dose of B(a)P. On the 15th day, animals were sacrificed; lung tissues and blood were collected for molecular analysis. B(a)P administration in mice induced the thickening of lung epithelium, damaged alveolar architecture, and promoted inflammatory cell infiltration in the lung tissues. Also, B[a]P significantly increased the expression of NF-kB, COX-2, IL-6, Bax, cleaved caspase 3, and cleaved PARP proteins and decreased antioxidant enzyme levels. Diosmin-100 and Diosmin-200 significantly attenuated the damage to lung epithelium, alveolar architecture, and reduced inflammatory cell infiltration in the lung tissues of mice. Diosmin significantly (P < .05) attenuated the levels of oxidative stress markers: lactate dehydrogenase and xanthine oxidase. A decrease in expression of NF-kB, COX-2, IL-6, Bax, cleaved caspase 3, and cleaved PARP proteins in mice was challenged with B[a]P. Diosmin thus could be a promising therapeutic adjuvant against B[a]P-induced oxidative stress and lung damage.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Benzo(a)pireno/toxicidad , Diosmina/farmacología , Contaminantes Ambientales/toxicidad , Lesión Pulmonar/prevención & control , Animales , Caspasa 3/metabolismo , Ciclooxigenasa 2/metabolismo , Pulmón/efectos de los fármacos , Lesión Pulmonar/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos
6.
Environ Toxicol ; 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33289288

RESUMEN

Hesperidin (HD), a citrus bioflavonoid possesses a variety of biological activities including antioxidant, anti-inflammatory, anti-apoptotic and anti-carcinogenic properties. In the present study, we investigated the effect of HD treatment on N,N'-dimethylhydrazine (DMH) induced oxidative stress, inflammation, apoptosis and goblet cell disintegration in the colon of Wistar rats. Administration of HD was done at two doses (100 and 200 mg/kg body weight) orally to rats daily for 14 days followed by a single subcutaneous injection of DMH (40 mg/kg body weight) on the 14th day and next day animals were sacrificed. The protective potential of HD against colon toxicity was measured through membrane oxidation, antioxidant status, inflammatory and apoptotic markers expression, and histological changes. Results demonstrated that HD inhibited DMH mediated oxidative damage by diminishing the level of peroxidation of lipids and increasing the activity of superoxide dismutase, catalase, reduced glutathione, glutathione peroxidase, glutathione-s-transferase, and glutathione reductase. Moreover, HD attenuated inflammatory (NF-кB, IL-6, and COX-2) and apoptotic (p38-MAPK, p53, and caspase-3) markers expression. HD also attenuated the DMH induced goblet cell disintegration and restored histoarchitecture of the colon. The results of the present study demonstrate that HD efficiently protects against DMH induced colon toxicity by modulating oxidative stress, inflammation, and apoptosis.

7.
Int Immunopharmacol ; 96: 107566, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33813368

RESUMEN

Benzo[a]pyrene, an environmental contaminant as well as a mutagen is widely found in cigarette smoke, automobile exhaust particles among other sources. The present study underlines the protective effect of Taxifolin on B[a]P induced lung injury in male Swiss Albino Mice by analyzing the activity/level of various pro and anti-oxidant parameters, Inflammatory markers, Phase II enzyme, as well as lung histology. Taxifolin was administered orally to mice at either dose of 20 or 40 mg/kg body weight for 14 days and then challenged with a single dose of B[a]P (125 mg/kg body weight by oral gavage) on the 14th day. Our results show treatment with B[a]P leads to increased activity/level of CYP450R, EH, pro-inflammatory proteins, as well as lipid peroxidation and reduce level/activity of anti-oxidant molecules while Taxifolin treatment shows ameliorative effect. Administration of B[a]P also leads to decrease in expression of ROS sensitive factor Nrf2 and its downstream target NQO1,HO-1,SOD while Taxifolin treated animals showed a very high level of expression of Nrf2,NQO1,HO-1,SOD. Since Nrf2 plays central role in providing resistance to oxidative stress and also suppresses inflammation by inhibiting NF-κB,we concluded Taxifolin suppresses oxidative stress and inflammation in B[a]P induced lung injury possibly via stimulating the Nrf2 signaling pathway.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antioxidantes/uso terapéutico , Inflamación/tratamiento farmacológico , Lesión Pulmonar/tratamiento farmacológico , Pulmón/patología , Factor 2 Relacionado con NF-E2/metabolismo , Quercetina/análogos & derivados , Animales , Benzopirenos/efectos adversos , Fumar Cigarrillos/efectos adversos , Inflamación/inducido químicamente , Peroxidación de Lípido , Lesión Pulmonar/inducido químicamente , Masculino , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo , Quercetina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
J Environ Pathol Toxicol Oncol ; 37(4): 273-289, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30806235

RESUMEN

The protective efficacy of methanolic bark extract of Acacia catechu Willd. (MEBA) against 1,2-dimethylhydrazine (DMH)-induced colon toxicity was investigated. Acacia catechu is considered one of the most potent medicines for various diseases in Ayurveda, a traditional system of Indian medicine. It is a widely used herb that contains a variety of bioactive components such as phenolic acids, alkaloids, and flavonoids among others. In the present study, MEBA was used as a pretreatment orally at two doses (250 and 500 mg/kg body weight [b.w.] once daily for 7 days), and DMH was administered (at a dose of 40 mg/kg b.w.) subcutaneously on day 7 in Wistar rats. The protective potential of MEBA was assessed in terms of the activity of antioxidant enzymes, lipid peroxidation, and expression of inflammatory markers (iNOS, COX-2, NF-κB, IL-6). Pretreatment with MEBA significantly abrogated oxidative damage by diminishing tissue lipid peroxidation, increasing enzymatic activities of various antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, reduced glutathione), and diminishing the induced expression of inflammatory markers in the colon tissue of Wistar rats. Furthermore, histopathological findings revealed that pretreatment with (MEBA) reduced intense filtration of inflammatory cells and significantly restored the architecture of colonic tissue. The results of this study indicate that MEBA significantly suppresses DMH-induced toxicity by ameliorating oxidative stress and inflammation and by restoring the architecture of colon tissue.


Asunto(s)
1,2-Dimetilhidrazina/toxicidad , Acacia , Carcinógenos/toxicidad , Colon/efectos de los fármacos , Corteza de la Planta , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Animales , Biomarcadores/metabolismo , Colon/metabolismo , Colon/patología , Esquema de Medicación , Femenino , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Metanol , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fitoterapia/métodos , Plantas Medicinales , Distribución Aleatoria , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA