Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1066, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212621

RESUMEN

Folate receptor (FR) alpha (FOLR1) and beta (FOLR2) are membrane-anchored folate transporters that are expressed at low levels in normal tissues, while their expression is strongly increased in several cancers. Intriguingly, although the function of these receptors in, for example, development and cancer has been studied intensively, their role in aging is still unknown. To address this, we utilized Caenorhabditis elegans, in which FOLR-1 is the sole ortholog of folate receptors. We found that the loss of FOLR-1 does not affect reproduction, physical condition, proteostasis or lifespan, indicating that it is not required for folate transport to maintain health. Interestingly, we found that FOLR-1 is detectably expressed only in uterine-vulval cells, and that the histone-binding protein LIN-53 inhibits its expression in other tissues. Furthermore, whereas knockdown of lin-53 is known to shorten lifespan, we found that the loss of FOLR-1 partially rescues this phenotype, suggesting that elevated folr-1 expression is detrimental for health. Indeed, our data demonstrate that overexpression of folr-1 is toxic, and that this phenotype is dependent on diet. Altogether, this work could serve as a basis for further studies to elucidate the organismal effects of abnormal FR expression in diseases such as cancer.


Asunto(s)
Proteínas de Caenorhabditis elegans , Receptor 2 de Folato , Neoplasias , Animales , Femenino , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Receptor 1 de Folato/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácido Fólico/metabolismo , Dieta , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Receptor 2 de Folato/metabolismo , Proteínas Represoras/metabolismo
2.
Cell Stress Chaperones ; 29(3): 392-403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608859

RESUMEN

Histone H3/H4 chaperone anti-silencing function 1 (ASF1) is a conserved factor mediating nucleosomal assembly and disassembly, playing crucial roles in processes such as replication, transcription, and DNA repair. Nevertheless, its involvement in aging has remained unclear. Here, we utilized the model organism Caenorhabditis elegans to demonstrate that the loss of UNC-85, the homolog of ASF1, leads to a shortened lifespan in a multicellular organism. Furthermore, we show that UNC-85 is required for epigenome-mediated longevity, as knockdown of the histone H3 lysine K4 methyltransferase ash-2 does not extend the lifespan of unc-85 mutants. In this context, we found that the longevity-promoting ash-2 RNA interference enhances UNC-85 activity by increasing its nuclear localization. Finally, our data indicate that the loss of UNC-85 increases the activity of one-carbon metabolism, and that downregulation of the one-carbon metabolism component dao-3/MTHFD2 partially rescues the short lifespan of unc-85 mutants. Together, these findings reveal UNC-85/ASF1 as a modulator of the central metabolic pathway and a factor regulating a pro-longevity response, thus shedding light on a mechanism of how nucleosomal maintenance associates with aging.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidad , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animales , Longevidad/genética , Carbono/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Histonas/metabolismo , Interferencia de ARN , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA