Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30630857

RESUMEN

Tau assemblies have prion-like properties: they propagate from one neuron to another and amplify by seeding the aggregation of endogenous Tau. Although key in prion-like propagation, the binding of exogenous Tau assemblies to the plasma membrane of naïve neurons is not understood. We report that fibrillar Tau forms clusters at the plasma membrane following lateral diffusion. We found that the fibrils interact with the Na+/K+-ATPase (NKA) and AMPA receptors. The consequence of the clustering is a reduction in the amount of α3-NKA and an increase in the amount of GluA2-AMPA receptor at synapses. Furthermore, fibrillar Tau destabilizes functional NKA complexes. Tau and α-synuclein aggregates often co-exist in patients' brains. We now show evidences for cross-talk between these pathogenic aggregates with α-synuclein fibrils dramatically enhancing fibrillar Tau clustering and synaptic localization. Our results suggest that fibrillar α-synuclein and Tau cross-talk at the plasma membrane imbalance neuronal homeostasis.


Asunto(s)
Amiloide/metabolismo , Neuronas/patología , Receptores AMPA/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sinapsis/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Membrana Celular/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Receptores AMPA/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , alfa-Sinucleína/genética , Proteínas tau/genética
2.
Biophys J ; 118(6): 1301-1320, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32059758

RESUMEN

The aggregation of the protein α-synuclein (α-Syn) leads to different synucleinopathies. We recently showed that structurally distinct fibrillar α-Syn polymorphs trigger either Parkinson's disease or multiple system atrophy hallmarks in vivo. Here, we establish a structural-molecular basis for these observations. We show that distinct fibrillar α-Syn polymorphs bind to and cluster differentially at the plasma membrane in both primary neuronal cultures and organotypic hippocampal slice cultures from wild-type mice. We demonstrate a polymorph-dependent and concentration-dependent seeding. We show a polymorph-dependent differential synaptic redistribution of α3-Na+/K+-ATPase, GluA2 subunit containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and GluN2B-subunit containing N-methyl-D-aspartate receptors, but not GluA1 subunit containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and metabotropic glutamate receptor 5 receptors. We also demonstrate polymorph-dependent alteration in neuronal network activity upon seeded aggregation of α-Syn. Our findings bring new, to our knowledge, insight into how distinct α-Syn polymorphs differentially bind to and seed monomeric α-Syn aggregation within neurons, thus affecting neuronal homeostasis through the redistribution of synaptic proteins.


Asunto(s)
Neuronas , alfa-Sinucleína , Animales , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , alfa-Sinucleína/metabolismo
3.
EMBO J ; 34(19): 2408-23, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26323479

RESUMEN

Extracellular α-synuclein (α-syn) assemblies can be up-taken by neurons; however, their interaction with the plasma membrane and proteins has not been studied specifically. Here we demonstrate that α-syn assemblies form clusters within the plasma membrane of neurons. Using a proteomic-based approach, we identify the α3-subunit of Na+/K+-ATPase (NKA) as a cell surface partner of α-syn assemblies. The interaction strength depended on the state of α-syn, fibrils being the strongest, oligomers weak, and monomers none. Mutations within the neuron-specific α3-subunit are linked to rapid-onset dystonia Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). We show that freely diffusing α3-NKA are trapped within α-syn clusters resulting in α3-NKA redistribution and formation of larger nanoclusters. This creates regions within the plasma membrane with reduced local densities of α3-NKA, thereby decreasing the efficiency of Na+ extrusion following stimulus. Thus, interactions of α3-NKA with extracellular α-syn assemblies reduce its pumping activity as its mutations in RDP/AHC.


Asunto(s)
Hemiplejía/metabolismo , Mutación , Neuronas/metabolismo , Trastornos Parkinsonianos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , alfa-Sinucleína/metabolismo , Hemiplejía/genética , Hemiplejía/patología , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neuronas/patología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , ATPasa Intercambiadora de Sodio-Potasio/genética , alfa-Sinucleína/genética
4.
Glia ; 61(10): 1673-86, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23922225

RESUMEN

ß-Amyloid (Aß) oligomers initiate synaptotoxicity following their interaction with the plasma membrane. Several proteins including metabotropic glutamate type 5 receptors (mGluR5s) contribute to this process. We observed an overexpression of mGluR5s in reactive astrocytes surrounding Aß plaques in brain sections from an Alzheimer's disease mouse model. In a simplified cell culture system, using immunocytochemistry and single molecule imaging, we demonstrated a rapid binding of Aß oligomers on the plasma membrane of astrocytes. The resulting aggregates of Aß oligomers led to the diffusional trapping and clustering of mGluR5s. Further, Aß oligomers induced an increase in ATP release following activation of astroglial mGluR5s by its agonist. ATP slowed mGluR5s diffusion in astrocytes as well as in neurons co-cultured with astrocytes. This effect, which is purinergic receptor-dependent, was not observed in pure neuronal cultures. Thus, Aß oligomer- and mGluR5-dependent ATP release by astrocytes may contribute to the overall deleterious effect of mGluR5s in Alzheimer's disease. GLIA 2013;61:1673-1686.


Asunto(s)
Adenosina Trifosfato/farmacología , Enfermedad de Alzheimer/patología , Astrocitos/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor del Glutamato Metabotropico 5/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/genética , Amiloide/metabolismo , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Animales , Animales Recién Nacidos , Apirasa/farmacología , Calcio/metabolismo , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Estadísticas no Paramétricas , Factores de Tiempo
5.
J Biol Chem ; 286(16): 14455-68, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21343285

RESUMEN

γ-Aminobutyric acid type A receptors (GABA(A)Rs) in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X(2) receptors (P2X(2)Rs) are also expressed in spinal cord neurons and are known to cross-talk with GABA(A)Rs. Here, we investigated a possible "dynamic" interaction between GABA(A)Rs and P2X(2)Rs using co-immunoprecipitation and fluorescence resonance energy transfer (FRET) studies in human embryonic kidney (HEK) 293 cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X(2)Rs forms a transient complex with GABA(A)Rs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface, where P2X(2)Rs and GABA(A)Rs are primarily located extra-synaptically. Furthermore, agonist-induced activation of P2X(2)Rs results in a Ca(2+)-dependent as well as an apparently Ca(2+)-independent increase in the mobility and an enhanced degradation of GABA(A)Rs, whereas P2X(2)Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2X(2)Rs and GABA(A)Rs could be used for specific targeting to neuronal membranes, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABA(A)Rs.


Asunto(s)
Receptores de GABA-A/química , Receptores Purinérgicos P2X2/química , Adenosina Trifosfato/química , Animales , Calcio/química , Línea Celular , Endocitosis , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Ratones , Neuronas/metabolismo , Unión Proteica , Receptores Purinérgicos/química , Médula Espinal/metabolismo , Ácido gamma-Aminobutírico/química
6.
Neuropharmacology ; 169: 107461, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30550795

RESUMEN

Neuronal Na+/K+-ATPase is responsible for the maintenance of ionic gradient across plasma membrane. In doing so, in a healthy brain, Na+/K+-ATPase activity accounts for nearly half of total brain energy consumption. The α3-subunit containing Na+/K+-ATPase expression is restricted to neurons. Heterozygous mutations within α3-subunit leads to Rapid-onset Dystonia Parkinsonism, Alternating Hemiplegia of Childhood and other neurological and neuropsychiatric disorders. Additionally, proteins such as α-synuclein, amyloid-ß, tau and SOD1 whose aggregation is associated to neurodegenerative diseases directly bind and impair α3-Na+/K+-ATPase activity. The review will provide a summary of neuronal α3-Na+/K+-ATPase functional properties, expression pattern, protein-protein interactions at the plasma membrane, biophysical properties (distribution and lateral diffusion). Lastly, the role of α3-Na+/K+-ATPase in neurological and neurodegenerative disorders will be discussed. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.


Asunto(s)
Trastornos Mentales/enzimología , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Neuronas/enzimología , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , ATPasa Intercambiadora de Sodio-Potasio/genética , Secuencia de Aminoácidos , Animales , Trastornos Distónicos/diagnóstico , Trastornos Distónicos/enzimología , Trastornos Distónicos/genética , Hemiplejía/diagnóstico , Hemiplejía/enzimología , Hemiplejía/genética , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Trastornos Mentales/diagnóstico , Mutación/genética , Enfermedades Neurodegenerativas/diagnóstico , Neuronas/patología
7.
Neuron ; 95(1): 33-50, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683268

RESUMEN

Several neurodegenerative disorders, such as Alzheimer's and Parkinson's disease, are characterized by prominent loss of synapses and neurons associated with the presence of abnormally structured or misfolded protein assemblies. Cell-to-cell transfer of misfolded proteins has been proposed for the intra-cerebral propagation of these diseases. When released, misfolded proteins diffuse in the 3D extracellular space before binding to the plasma membrane of neighboring cells, where they diffuse on a 2D plane. This reduction in diffusion dimension and the cell surface molecular crowding promote deleterious interactions with native membrane proteins, favoring clustering and further aggregation of misfolded protein assemblies. These processes open up new avenues for therapeutics development targeting the initial interactions of deleterious proteins with the plasma membrane or the subsequent pathological signaling.


Asunto(s)
Membrana Celular/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Priones/metabolismo , Agregación Patológica de Proteínas/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Espacio Extracelular/metabolismo , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Parkinson/metabolismo , Superóxido Dismutasa-1/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
8.
Data Brief ; 7: 221-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26958642

RESUMEN

α-Synuclein (α-syn) is the principal component of Lewy bodies, the pathophysiological hallmark of individuals affected by Parkinson disease (PD). This neuropathologic form of α-syn contributes to PD progression and propagation of α-syn assemblies between neurons. The data we present here support the proteomic analysis used to identify neuronal proteins that specifically interact with extracellularly applied oligomeric or fibrillar α-syn assemblies (conditions 1 and 2, respectively) (doi: 10.15252/embj.201591397[1]). α-syn assemblies and their cellular partner proteins were pulled down from neuronal cell lysed shortly after exposure to exogenous α-syn assemblies and the associated proteins were identified by mass spectrometry using a shotgun proteomic-based approach. We also performed experiments on pure cultures of astrocytes to identify astrocyte-specific proteins interacting with oligomeric or fibrillar α-syn (conditions 3 and 4, respectively). For each condition, proteins interacting selectively with α-syn assemblies were identified by comparison to proteins pulled-down from untreated cells used as controls. The mass spectrometry data, the database search and the peak lists have been deposited to the ProteomeXchange Consortium database via the PRIDE partner repository with the dataset identifiers PRIDE: PXD002256 to PRIDE: PXD002263 and doi: 10.6019/PXD002256 to 10.6019/PXD002263.

9.
Cell Rep ; 13(12): 2768-80, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26711343

RESUMEN

GABAergic synaptic transmission regulates brain function by establishing the appropriate excitation-inhibition (E/I) balance in neural circuits. The structure and function of GABAergic synapses are sensitive to destabilization by impinging neurotransmitters. However, signaling mechanisms that promote the restorative homeostatic stabilization of GABAergic synapses remain unknown. Here, by quantum dot single-particle tracking, we characterize a signaling pathway that promotes the stability of GABAA receptor (GABAAR) postsynaptic organization. Slow metabotropic glutamate receptor signaling activates IP3 receptor-dependent calcium release and protein kinase C to promote GABAAR clustering and GABAergic transmission. This GABAAR stabilization pathway counteracts the rapid cluster dispersion caused by glutamate-driven NMDA receptor-dependent calcium influx and calcineurin dephosphorylation, including in conditions of pathological glutamate toxicity. These findings show that glutamate activates distinct receptors and spatiotemporal patterns of calcium signaling for opposing control of GABAergic synapses.


Asunto(s)
Calcio/metabolismo , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología , Animales , Señalización del Calcio , Neuronas GABAérgicas/metabolismo , Ratones Noqueados , Ratas , Ratas Wistar
10.
Front Cell Neurosci ; 5: 7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21734865

RESUMEN

γ-Aminobutyric acid type A receptors (GABA(A)Rs) are the major inhibitory neurotransmitter receptors in the central nervous system, and importantly contribute to the functional regulation of the nervous system. Several studies in the last few decades have convincingly shown that GABA can be co-localized with other neurotransmitters in the same synapse, and can be co-released with these neurotransmitters either from the same vesicles or from different vesicle pools. The co-released transmitters may act on post-synaptically co-localized receptors resulting in a simultaneous activation of both receptors. Most of the studies investigating such co-activation observed a reduced efficacy of GABA for activating GABA(A)Rs and thus, a reduced inhibition of the post-synaptic neuron. Similarly, in several cases activation of GABA(A)Rs has been reported to suppress the response of the associated receptors. Such a receptor cross-talk is either mediated via a direct coupling between the two receptors or via the activation of intracellular signaling pathways and is used for fine tuning of inhibition in the nervous system. Recently, it was demonstrated that a direct interaction of different receptors might already occur in intracellular compartments and might also be used to specifically target the receptors to the cell membrane. In this article, we provide an overview on such cross-talks between GABA(A)Rs and several other neurotransmitter receptors and briefly discuss their possible physiological and clinical importance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA