Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Biochem ; 120(5): 7211-7221, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30387209

RESUMEN

Our previous study showed that epigallocatechin-3-gallate (EGCG) inhibition of human aortic smooth muscle cell (HASMC) proliferation might be mediated via upregulation of mitofusin 2 (Mfn-2). Studies on the mechanism of Mfn-2 inhibition of cell proliferation have mainly focused on downstream signaling. However, it is still not clear how upstream signaling molecules regulate Mfn-2. The promoter region of the Mfn-2 gene contains cis-acting elements of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and estrogen-related receptor-α (ERR-α), suggesting a possible link between EGCG, Mfn-2, and PGC-1α/ERR-α. However, the effect of EGCG on PGC-1α/ERR-α remains unknown. In this study, we investigated the role of PGC-1α/ERR-α in the regulation of Mfn-2 induced by EGCG and assessed the underlying mechanisms. The effects of EGCG on cell proliferation of cultured HASMCs were observed by a cell counting kit-8 (CCK8) and 5-ethynyl-2-deoxyuridine (EdU) incorporation assay. Mfn-2, PGC-1α, and ERR-α gene and protein levels were determined by quantitative real-time polymerase chain reaction (PCR) and Western blot analysis. PGC-1α gene-silencing (PGC-1α small interfering RNA [siRNA]) was achieved by RNA interference and Mfn-2 promoter and peroxisome proliferator response element (PPRE) functional activity was achieved by a luciferase transfection assay. The results showed that the ERR-α-specific antagonist XCT-790 and PGC-1α siRNA decreased the expression of Mfn-2, thus antagonizing the inhibition of HASMC proliferation induced by EGCG. EGCG enhanced Mfn-2 promoter (-352 to 459) activity, while XCT-790 and PGC-1α siRNA abrogated this effect. PGC-1α stimulating Mfn-2 expression was dependent on intact ERR-α binding in the Mfn-2 promoter. The transcriptional effect of PGC-1α on the Mfn-2 promoter required the integrity of the -432 to 459 region and supported that Mfn-2 was a key target gene of PGC-1α. These results imply that PGC-1α/ERR-α played important physiological roles in inhibiting the proliferation of HASMCs by modulating Mfn-2 gene expression. Hence, EGCG regulated Mfn-2 expression likely through the PGC-1α/ERR-α pathway.

2.
J Thorac Dis ; 15(2): 658-667, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36910111

RESUMEN

Background: Acute kidney injury (AKI) is a prevalent complication of acute aortic dissection (AAD) and is associated with poor outcomes. The onset of AAD may result in endothelial injury due to the formation of the false lumen, which can activate the coagulation pathway and lead to coagulation dysfunction. It serves as a valuable diagnostic and prognostic marker for AAD, but also plays a role in the pathological mechanisms underlying AKI. We aimed to investigate the potential value of coagulation indicators at admission for assessing in-hospital AKI and malignant events after AAD. Methods: We identified patients with AAD admitted to the First Affiliated Hospital of Shantou University Medical College from January 2015 to October 2020 and divided them into two groups according to coagulation function. Univariable and multivariable analyses were used to analyze the association between coagulation indicators and AKI and malignant events in patients with AAD. Chi-squared or Fisher exact test and receiver operating characteristic (ROC) curve analysis was conducted to assess the value of coagulation indicators in predicting in-hospital AKI and malignant events. Results: A total of 487 patients were enrolled in this study, including 309 cases with normal coagulation. After the multivariable adjustment, the incidence of in-hospital AKI in the abnormal coagulation group was significantly higher [model 1: 2.061 (1.214-3.501), P=0.007; model 2: 1.833 (1.058-3.177), P=0.031; model 3: 1.836 (1.048-3.216), P=0.034]. The incidence of malignant events was higher in the abnormal prothrombin time (PT) group [model 1: 4.283 (0.983-18.665), P=0.053; model 2: 7.342 (1.467-36.749), P=0.015; model 3: 6.996 (1.377-35.537), P=0.019]. Chi-squared and Fisher exact test showed that PT and abnormal coagulation score (ACS) were statistically different among the AKI groups and malignant event groups. Under ROC analysis, coagulation indicators were helpful to predict AKI (AUC =0.668; P<0.001). Conclusions: Our study confirmed the presence of coagulation dysfunction is associated with an increased risk of AKI and malignant events. It suggested the severity of coagulation dysfunction is positively correlated with the incidence of in-hospital AKI in AAD patients. These results highlight the importance of considering coagulation dysfunction as a potential mechanism underlying AKI and malignant events after AAD.

3.
BMC Med Genomics ; 14(1): 240, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615528

RESUMEN

BACKGROUND: Both DNA genotype and methylation of antisense non-coding RNA in the INK4 locus (ANRIL) have been robustly associated with coronary artery disease (CAD), but the interdependent mechanisms of genotype and methylation remain unclear. METHODS: Eighteen tag single nucleotide polymorphisms (SNPs) of ANRIL were genotyped in a matched case-control study (cases 503 and controls 503). DNA methylation of ANRIL and the INK4/ARF locus (p14ARF, p15INK4b and p16INK4a) was measured using pyrosequencing in the same set of samples (cases 100 and controls 100). RESULTS: Polymorphisms of ANRIL (rs1004638, rs1333048 and rs1333050) were significantly associated with CAD (p < 0.05). The incidence of CAD, multi-vessel disease, and modified Gensini scores demonstrated a strong, direct association with ANRIL gene dosage (p < 0.05). There was no significant association between ANRIL polymorphisms and myocardial infarction/acute coronary syndrome (MI/ACS) (p > 0.05). Methylation levels of ANRIL were similar between the two studied groups (p > 0.05), but were different in the rs1004638 genotype, with AA and AT genotype having a higher level of ANRIL methylation (pos4, p = 0.006; pos8, p = 0.019). Further Spearman analyses indicated that methylation levels of ANRIL were positively associated with systolic blood pressure (pos6, r = 0.248, p = 0.013), diastolic blood pressure (pos3, r = 0.213, p = 0.034; pos6, r = 0.220, p = 0.028), and triglyceride (pos4, r = 0.253, p = 0.013), and negatively associated with high-density lipoprotein cholesterol (pos2, r = - 0.243, p = 0.017). Additionally, we identified 12 transcription factor binding sites (TFBS) within the methylated ANRIL region, and functional annotation indicated these TFBS were associated with basal transcription. Methylation at the INK4/ARF locus was not associated with ANRIL genotype. CONCLUSIONS: These results indicate that ANRIL genotype (tag SNPs rs1004638, rs1333048 and rs1333050) mainly affects coronary atherosclerosis, but not MI/ACS. There may be allele-related DNA methylation and allele-related binding of transcription factors within the ANRIL promoter.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , ARN Largo no Codificante/genética , Anciano , Estudios de Casos y Controles , Femenino , Dosificación de Gen , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
4.
Life Sci ; 225: 39-45, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30917908

RESUMEN

AIMS: Renin-angiotensin system modulates cardiac structure independent of blood pressure. The present study aimed at investigating whether single nucleotide polymorphism (SNP) and haplotype of angiotensin converting enzyme 2 (ACE2) could influence blood pressure and the susceptibility to hypertensive left ventricular hypertrophy (LVH). SUBJECTS AND METHODS: A total of 647 patients (347 females and 300 males) with newly diagnosed mild to moderate essential hypertension were enrolled in a blood pressure matched, case-control study. Four ACE2 tagSNPs (rs2074192, rs4646176, rs4646155 and rs2106809) were genotyped and major haplotypes consisting of these four SNPs were reconstructed for all subjects. KEY FINDINGS: In females, minor alleles of ACE2 rs2074192 and rs2106809 respectively conferred a 2.1 and 2.0 fold risk for LVH. ACE2 haplotype TCGT increased the risk for LVH while another haplotype CCGC decreased the risk in females. The covariates-adjusted mean left ventricular mass index was 11% greater in TCGT haplotype carriers than in noncarriers in women. In females, the covariates-adjusted mean systolic blood pressure was 3.4 mm Hg lower in CCGC haplotype carriers than in noncarriers. In males, the covariates-adjusted mean systolic blood pressure was 2.4 mm Hg lower in CCGC haplotype carriers than in noncarriers. SIGNIFICANCE: ACE2 tagSNPs rs2074192 and rs2106809 as well as major haplotypes CCGC and TCGT may serve as novel risk markers for LVH in hypertensive patients.


Asunto(s)
Marcadores Genéticos , Hipertensión/genética , Hipertrofia Ventricular Izquierda/genética , Peptidil-Dipeptidasa A/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Enzima Convertidora de Angiotensina 2 , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Hipertensión/patología , Hipertrofia Ventricular Izquierda/patología , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Medicine (Baltimore) ; 96(38): e8014, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28930837

RESUMEN

BACKGROUND: Several studies have revealed that high shock index (SI) is a risk factor for acute myocardial infarction (AMI) patients. These studies do not give a systematic review in this issue. Therefore, we conducted a systematic review and meta-analysis to determine the effect of high SI on the prognosis of AMI patients. METHODS: We did a systematic search of PubMed, Embase, and the Cochrane Library, using various combinations of keywords such as "shock index," "shock-index," "acute myocardial infarction," "ST elevation myocardial infarction," "non-ST segment elevation myocardial infarction," "STEMI," "NSTEMI," "AMI," and "MI" for eligible studies published up to December 23, 2016. The 3 primary outcomes for this analysis were all-cause in-hospital mortality, short-term adverse outcomes, and long-term adverse outcomes. RESULTS: Database searches retrieved 226 citations. Finally, 8 studies enrolling 20,404 patients were eventually included in the analysis. High SI was associated with an increased in-hospital mortality (pooled RR = 10.96, 95% CI: 2.00-59.94, P = .01). Adverse outcomes were significantly higher in the high SI group compared to the low SI group (pooled RR = 1.93, 95% CI: 1.10-3.39, P = .02; I = 95%). Individuals with high SI had an increased risk of long-term adverse outcomes (pooled RR = 2.31, 95% CI: 1.90-2.81, P < .001) compared to low SI. CONCLUSION: High SI may increase the in-hospital mortality, short-term, and long-term adverse outcomes in AMI patients.


Asunto(s)
Presión Sanguínea , Frecuencia Cardíaca , Infarto del Miocardio/mortalidad , Choque Cardiogénico/diagnóstico , Mortalidad Hospitalaria , Humanos , Infarto del Miocardio/fisiopatología , Pronóstico , Choque Cardiogénico/mortalidad
6.
Eur J Cell Biol ; 93(4): 137-44, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24880525

RESUMEN

Previous studies have shown that epigallocatechin-3-gallate (EGCG) inhibits the proliferation of vascular smooth muscle cells (VSMCs) via the extracellular-signal-regulated kinase (ERK1/2) and mitogen activated protein kinases (MAPKs) pathway. Mitofusin 2 (Mfn-2) also suppresses VSMC proliferation through Ras-Raf-ERK/MAPK, suggesting a possible link between EGCG, Mfn-2 and ERK/MAPK. However, the effect of EGCG on Mfn-2 remains unknown. In this study, we investigated the role of Mfn-2 in the regulation of VSMC proliferation by EGCG, and assessed the underlying mechanisms. The effects of EGCG on the proliferation of cultured human aortic smooth muscle cells (HASMCs) were observed by 5-ethynl-2-deoxyuridine (EdU) incorporation assay. Mfn-2 gene and protein levels, and Ras, p-c-Raf and p-ERK1/2 protein levels were determined by quantitative real-time polymerase chain reaction and western blotting, respectively. Mfn-2 gene silencing was achieved by RNA interference. EGCG 50 µmol/L profoundly inhibited the proliferation of HASMCs in culture, up-regulated Mfn-2, and down-regulated the expression of p-c-Raf and p-ERK1/2. Furthermore, RNA interference-mediated gene knockdown of Mfn-2 antagonized EGCG-induced anti-proliferation and down-regulation of Ras, p-c-Raf and p-ERK1/2. These results suggest that EGCG inhibits the proliferation of HASMCs in vitro largely via Mfn-2-mediated suppression of the Ras-Raf-ERK/MAPK signaling pathway.


Asunto(s)
Catequina/análogos & derivados , Proliferación Celular/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Aorta/citología , Aorta/efectos de los fármacos , Catequina/farmacología , Línea Celular , GTP Fosfohidrolasas/genética , Humanos , Proteínas Mitocondriales/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos del Músculo Liso/citología , Proteínas Proto-Oncogénicas c-raf/metabolismo , ARN Interferente Pequeño/genética , Regulación hacia Arriba
7.
Cell Biochem Biophys ; 70(2): 1023-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24817640

RESUMEN

Recent studies have shown that endothelial progenitor cells (EPCs) participated in angiogenic effects of nicotine and nicotine dose dependently increased the functional activity of early EPCs. The effects of nicotine on late EPCs remain to be determined. Therefore, we investigated whether nicotine had influences on the functional activity of late EPCs. Late EPCs were isolated from human umbilical cord blood and characterized. Late EPCs of 3-5 passages were treated for 32 h with either vehicle or nicotine. The proliferative, migratory, and in vitro vasculogenesis activities of late EPCs were assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, modified Boyden chamber assay, and in matrigel, respectively. Late EPCs adhesion assay was performed by replating cells on fibronectin-coated dishes, and then adherent cells were counted. Nicotine enhanced proliferative, migratory, adhesive, and in vitro vasculogenesis capacities of late EPCs. These effects were significantly reduced in the presence of phosphatidylinositol (PI) 3-kinase inhibitor.


Asunto(s)
Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/efectos de los fármacos , Nicotina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Progenitoras Endoteliales/enzimología , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA