Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 34(8): 2884-97, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553930

RESUMEN

A hallmark of Alzheimer's disease (AD) brain is the amyloid ß (Aß) plaque, which is comprised of Aß peptides. Multiple lines of evidence suggest that Aß oligomers are more toxic than other peptide forms. We sought to develop a robust assay to quantify oligomers from CSF. Antibody 19.3 was compared in one-site and competitive ELISAs for oligomer binding specificity. A two-site ELISA for oligomers was developed using 19.3 coupled to a sensitive, bead-based fluorescent platform able to detect single photons of emitted light. The two-site ELISA was >2500× selective for Aß oligomers over Aß monomers with a limit of detection ∼ 0.09 pg/ml in human CSF. The lower limit of reliable quantification of the assay was 0.18 pg/ml and the antibody pairs recognized Aß multimers comprised of either synthetic standards, or endogenous oligomers isolated from confirmed human AD and healthy control brain. Using the assay, a significant 3- to 5-fold increase in Aß oligomers in human AD CSF compared with comparably aged controls was demonstrated. The increase was seen in three separate human cohorts, totaling 63 AD and 54 controls. CSF oligomers ranged between 0.1 and 10 pg/ml. Aß oligomer levels did not strongly associate with age or gender, but had an inverse correlation with MMSE score. The C statistic for the Aß oligomer ROC curve was 0.86, with 80% sensitivity and 88% specificity to detect AD, suggesting reasonable discriminatory power for the AD state and the potential for utility as a diagnostic marker.


Asunto(s)
Envejecimiento/líquido cefalorraquídeo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/inmunología , Anticuerpos/inmunología , Especificidad de Anticuerpos , Biomarcadores/líquido cefalorraquídeo , Ensayo de Inmunoadsorción Enzimática , Reacciones Falso Positivas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Fragmentos de Péptidos/líquido cefalorraquídeo , Curva ROC , Reproducibilidad de los Resultados , Dispersión de Radiación
2.
Proc Natl Acad Sci U S A ; 106(37): 15950-5, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19717450

RESUMEN

The forebrain cholinergic system promotes higher brain function in part by signaling through the M(1) muscarinic acetylcholine receptor (mAChR). During Alzheimer's disease (AD), these cholinergic neurons degenerate, therefore selectively activating M(1) receptors could improve cognitive function in these patients while avoiding unwanted peripheral responses associated with non-selective muscarinic agonists. We describe here benzyl quinolone carboxylic acid (BQCA), a highly selective allosteric potentiator of the M(1) mAChR. BQCA reduces the concentration of ACh required to activate M(1) up to 129-fold with an inflection point value of 845 nM. No potentiation, agonism, or antagonism activity on other mAChRs is observed up to 100 microM. Furthermore studies in M(1)(-/-) mice demonstrates that BQCA requires M(1) to promote inositol phosphate turnover in primary neurons and to increase c-fos and arc RNA expression and ERK phosphorylation in the brain. Radioligand-binding assays, molecular modeling, and site-directed mutagenesis experiments indicate that BQCA acts at an allosteric site involving residues Y179 and W400. BQCA reverses scopolamine-induced memory deficits in contextual fear conditioning, increases blood flow to the cerebral cortex, and increases wakefulness while reducing delta sleep. In contrast to M(1) allosteric agonists, which do not improve memory in scopolamine-challenged mice in contextual fear conditioning, BQCA induces beta-arrestin recruitment to M(1), suggesting a role for this signal transduction mechanism in the cholinergic modulation of memory. In summary, BQCA exploits an allosteric potentiation mechanism to provide selectivity for the M(1) receptor and represents a promising therapeutic strategy for cognitive disorders.


Asunto(s)
Receptor Muscarínico M1/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Señalización del Calcio/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Cricetinae , Cricetulus , Perros , Miedo/efectos de los fármacos , Miedo/fisiología , Humanos , Técnicas In Vitro , Fosfatos de Inositol/metabolismo , Macaca mulatta , Ratones , Ratones Noqueados , Modelos Moleculares , Estructura Terciaria de Proteína , Quinolonas/farmacología , Ensayo de Unión Radioligante , Ratas , Receptor Muscarínico M1/química , Receptor Muscarínico M1/deficiencia , Receptor Muscarínico M1/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sueño/efectos de los fármacos , Sueño/fisiología
3.
J Biol Chem ; 285(10): 7619-32, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20032460

RESUMEN

Synaptic degeneration, including impairment of synaptic plasticity and loss of synapses, is an important feature of Alzheimer disease pathogenesis. Increasing evidence suggests that these degenerative synaptic changes are associated with an accumulation of soluble oligomeric assemblies of amyloid beta (Abeta) known as ADDLs. In primary hippocampal cultures ADDLs bind to a subpopulation of neurons. However the molecular basis of this cell type-selective interaction is not understood. Here, using siRNA screening technology, we identified alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits and calcineurin as candidate genes potentially involved in ADDL-neuron interactions. Immunocolocalization experiments confirmed that ADDL binding occurs in dendritic spines that express surface AMPA receptors, particularly the calcium-impermeable type II AMPA receptor subunit (GluR2). Pharmacological removal of the surface AMPA receptors or inhibition of AMPA receptors with antagonists reduces ADDL binding. Furthermore, using co-immunoprecipitation and photoreactive amino acid cross-linking, we found that ADDLs interact preferentially with GluR2-containing complexes. We demonstrate that calcineurin mediates an endocytotic process that is responsible for the rapid internalization of bound ADDLs along with surface AMPA receptor subunits, which then both colocalize with cpg2, a molecule localized specifically at the postsynaptic endocytic zone of excitatory synapses that plays an important role in activity-dependent glutamate receptor endocytosis. Both AMPA receptor and calcineurin inhibitors prevent oligomer-induced surface AMPAR and spine loss. These results support a model of disease pathogenesis in which Abeta oligomers interact selectively with neurotransmission pathways at excitatory synapses, resulting in synaptic loss via facilitated endocytosis. Validation of this model in human disease would identify therapeutic targets for Alzheimer disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Calcineurina/metabolismo , Endocitosis/fisiología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Animales , Calcineurina/genética , Células Cultivadas , Hipocampo/citología , Humanos , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/química , Receptores AMPA/genética , Sinapsis/patología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
4.
Biochemistry ; 45(51): 15157-67, 2006 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-17176037

RESUMEN

A growing body of evidence suggests that soluble oligomeric forms of the amyloid beta peptide known as amyloid-derived diffusible ligands (ADDLs) are the toxic species responsible for neurodegeneration associated with Alzheimer's disease. Accurate biophysical characterization of ADDL preparations is hampered by the peptide's strong tendency to self-associate and the effect of factors such as ionic strength, temperature, and pH on its behavior. In addition, amyloid peptides are known to interact with common laboratory excipients, specifically detergents, further complicating the results from standard analytical methods such as denaturing polyacrylamide gel electrophoresis. We have studied the solution behavior of various amyloid peptide preparations using analytical ultracentrifugation and size exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that ADDL preparations exist in solution primarily as a binary mixture of a monomeric peptide and high-molecular mass oligomers. We relate our findings to previously described characterizations utilizing atomic force microscopy and electrophoretic methods and demonstrate that low-molecular mass oligomers identified by gel electrophoresis likely represent artifacts induced by the peptide's interaction with detergent, while atomic force microscopy results are likely skewed by differential binding of monomeric and oligomeric peptide species. Finally, we confirm that only the high-molecular mass oligomeric components of an ADDL preparation are capable of binding to subpopulations of primary hippocampal neurons in vitro.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Soluciones , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/ultraestructura , Animales , Células Cultivadas , Cromatografía en Gel , Ligandos , Microscopía de Fuerza Atómica , Peso Molecular , Neuronas/química , Neuronas/metabolismo , Neuronas/ultraestructura , Fragmentos de Péptidos/toxicidad , Fragmentos de Péptidos/ultraestructura , Unión Proteica , Ratas
5.
Endocrinology ; 147(6): 3076-84, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16527848

RESUMEN

Estradiol enhances plasticity and survival of the injured brain. Our previous work demonstrates that physiological levels of estradiol protect against cerebral ischemia in the young and aging brain through actions involving estrogen receptors (ERs) and alterations in gene expression. The major goal of this study was to establish mechanisms of neuroprotective actions induced by low levels of estradiol. We first examined effects of estradiol on the time-dependent evolution of ischemic brain injury. Because estradiol is known to influence apoptosis, we hypothesized that it acts to decrease the delayed phase of cell death observed after middle cerebral artery occlusion (MCAO). Furthermore, because ERs are pivotal to neuroprotection, we examined the temporal expression profiles of both ER subtypes, ERalpha and ERbeta, after MCAO and delineated potential roles for each receptor in estradiol-mediated neuroprotection. We quantified cell death in brains at various times after MCAO and analyzed ER expression by RT-PCR, in situ hybridization, and immunohistochemistry. We found that during the first 24 h, the mechanisms of estradiol-induced neuroprotection after MCAO are limited to attenuation of delayed cell death and do not influence immediate cell death. Furthermore, we discovered that ERs exhibit distinctly divergent profiles of expression over the evolution of injury, with ERalpha induction occurring early and ERbeta modulation occurring later. Finally, we provide evidence for a new and functional role for ERalpha in estradiol-mediated protection of the injured brain. These findings indicate that physiological levels of estradiol protect against delayed cell death after stroke-like injury through mechanisms requiring ERalpha.


Asunto(s)
Apoptosis/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Estradiol/uso terapéutico , Receptor alfa de Estrógeno/fisiología , Fármacos Neuroprotectores/uso terapéutico , Animales , Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Transducción de Señal
6.
Pharmacol Biochem Behav ; 84(1): 158-61, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16757017

RESUMEN

MPTP treatment has been used in mice to cause dopaminergic neuronal cell loss and subsequent behavioral abnormalities. As such, this animal model is often used as a method for the characterization of putative novel therapeutics for disease states characterized by dopamine loss, such as Parkinson's disease. Previous reports of behavioral abnormalities in mice following MPTP intoxication, however, have been conflicting. For example, open field spontaneous activity has been reported to increase, decrease or not change in MPTP treated mice. Accordingly, a more robust and direct functional measure of MPTP-induced central dopamine depletion is needed. In the present manuscript, we report on the characterization of amphetamine-induced locomotor activity as a sensitive functional endpoint for dopamine loss following MPTP treatment. We found that the amphetamine-induced locomotor activity of C57BL/6 mice was reduced in a dose-dependent manner following treatment with MPTP. This reduction of activity was associated with decreases in central dopamine levels. Further, the potential for use of this endpoint to evaluate putative therapeutics is exemplified by the amelioration of these effects following pre-treatment with the MAO-B inhibitor selegiline.


Asunto(s)
Anfetamina/farmacología , Locomoción/efectos de los fármacos , N-Metilaspartato/farmacología , Selegilina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología
7.
Amyloid ; 23(3): 168-177, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27494229

RESUMEN

Amyloid light chain (AL) amyloidosis is characterized by misfolded light chain (LC) (amyloid) deposition in various peripheral organs, leading to progressive dysfunction and death. There are no regulatory agency-approved treatments for AL amyloidosis, and none of the available standard of care approaches directly targets the LC protein that constitutes the amyloid. NEOD001, currently in late-stage clinical trials, is a conformation-specific, anti-LC antibody designed to specifically target misfolded LC aggregates and promote phagocytic clearance of AL amyloid deposits. The present study demonstrated that the monoclonal antibody 2A4, the murine form of NEOD001, binds to patient-derived soluble and insoluble LC aggregates and induces phagocytic clearance of AL amyloid in vitro. 2A4 specifically labeled all 21 fresh-frozen organ samples studied, which were derived from 10 patients representing both κ and λ LC amyloidosis subtypes. 2A4 immunoreactivity largely overlapped with thioflavin T-positive labeling, and 2A4 bound both soluble and insoluble LC aggregates extracted from patient tissue. Finally, 2A4 induced macrophage engagement and phagocytic clearance of AL amyloid deposits in vitro. These findings provide further evidence that 2A4/NEOD001 can effectively clear and remove human AL-amyloid from tissue and further support the rationale for the evaluation of NEOD001 in patients with AL amyloidosis.


Asunto(s)
Proteínas Amiloidogénicas/inmunología , Amiloidosis/inmunología , Anticuerpos Monoclonales/química , Complejo Antígeno-Anticuerpo/química , Cadenas Ligeras de Inmunoglobulina/química , Fagocitosis , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/aislamiento & purificación , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Anticuerpos Monoclonales/biosíntesis , Benzotiazoles , Línea Celular , Humanos , Cadenas Ligeras de Inmunoglobulina/aislamiento & purificación , Ratones , Monocitos/citología , Monocitos/inmunología , Agregado de Proteínas/inmunología , Unión Proteica , Coloración y Etiquetado/métodos , Tiazoles/química
8.
Sci Transl Med ; 7(297): 297ra113, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26203081

RESUMEN

Many neurological and psychiatric maladies originate from the deprivation of the human brain from estrogens. However, current hormone therapies cannot be used safely to treat these conditions commonly associated with menopause because of detrimental side effects in the periphery. The latter also prevents the use of the hormone for neuroprotection. We show that a small-molecule bioprecursor prodrug, 10ß,17ß-dihydroxyestra-1,4-dien-3-one (DHED), converts to 17ß-estradiol in the brain after systemic administration but remains inert in the rest of the body. The localized and rapid formation of estrogen from the prodrug was revealed by a series of in vivo bioanalytical assays and through in vivo imaging in rodents. DHED treatment efficiently alleviated symptoms that originated from brain estrogen deficiency in animal models of surgical menopause and provided neuroprotection in a rat stroke model. Concomitantly, we determined that 17ß-estradiol formed in the brain from DHED elicited changes in gene expression and neuronal morphology identical to those obtained after direct 17ß-estradiol treatment. Together, complementary functional and mechanistic data show that our approach is highly relevant therapeutically, because administration of the prodrug selectively produces estrogen in the brain independently from the route of administration and treatment regimen. Therefore, peripheral responses associated with the use of systemic estrogens, such as stimulation of the uterus and estrogen-responsive tumor growth, were absent. Collectively, our brain-selective prodrug approach may safely provide estrogen neuroprotection and medicate neurological and psychiatric symptoms developing from estrogen deficiency, particularly those encountered after surgical menopause, without the adverse side effects of current hormone therapies.


Asunto(s)
Androstenodioles/farmacología , Encéfalo/metabolismo , Estradiol/metabolismo , Estrógenos/metabolismo , Profármacos/farmacología , Androstenodioles/uso terapéutico , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Estradiol/química , Estrógenos/química , Femenino , Humanos , Células MCF-7 , Neuroprotección/efectos de los fármacos , Profármacos/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Útero/efectos de los fármacos
9.
Endocrinology ; 143(5): 1643-50, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11956145

RESUMEN

Early studies found estrogen-binding sites in the ER knockout (ERalphaKO) mouse brain, suggesting a splice variant of ERalpha or another ER. The discovery of ERbeta suggested that binding was due to ERbeta, although questions about an ERgamma remained. To test this hypothesis, ERbetaKO mice were generated and crossed with ERalphaKO mice, and ERalpha/betaKO animals were used for in vivo binding studies with [(125)I]estrogen. The results revealed nuclear binding sites in the ERalpha/betaKO hypothalamus and amygdala. As the binding resembled the distribution of ERalpha, we evaluated the presence of ERalpha splicing variants. A nonphysiological splice variant of ERalpha was identified in ERalpha/betaKO brain and uterus, but was absent in wild-type mice. ERalpha immunoreactivity was also detected in regions of ERalpha/betaKO brain where residual binding was seen. To ascertain the functionality of the variant, the regulation of PR was assessed in brain. The results revealed that E2 significantly increased PR expression, an indication that the variant can regulate gene transcription. These data demonstrate the presence and functionality of an ERalpha variant in ERalpha/betaKO brain and suggest that the residual binding and regulation of PR in ERalpha/betaKO brain can be accounted for by the variant.


Asunto(s)
Química Encefálica/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Secuencia de Aminoácidos , Animales , Autorradiografía , Secuencia de Bases , Sitios de Unión , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
J Comp Neurol ; 465(3): 372-84, 2003 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-12966562

RESUMEN

The bradykinin 1 and 2 receptors (B1R, B2R) are important mediators of cardiovascular homeostasis, inflammation, and nociception. While B2R is constitutively expressed in many tissues, B1R expression is thought to be absent, but induced under proinflammatory conditions. However, recent data from knockout mice have indicated that B1R acts centrally to mediate nociception, a finding that suggests the constitutive presence of B1R in brain and/or spinal cord. The purpose of the present study was to further elucidate the physiological role of B1R by evaluating the localization of B1R mRNA in the nonhuman primate brain and spinal cord with in situ hybridization. Cryostat sections from monkey brain and spinal cord were hybridized with a [(35)S]-labeled riboprobe complementary to B1R mRNA, stringently washed, and apposed to film and emulsion. The results of these studies revealed the presence of B1R mRNA throughout the rostral-caudal extent of the brain and spinal cord. In particular, labeled cells were seen in the cerebral and entorhinal cortex, dentate gyrus, and pyramidal neurons of the hippocampus, in the thalamus, hypothalamus, amygdala, pontine nuclei, spinal cord, and dorsal root ganglion. Together the present findings offer detailed information about the distribution of B1R mRNA in the primate brain and spinal cord and demonstrate a basal level of expression in the primate nervous system. Moreover, these data provide a foundation for understanding the central actions of kinins and their putative role in mediating a number of processes, including pain and nociception.


Asunto(s)
Encéfalo/metabolismo , Hibridación in Situ/métodos , ARN Mensajero/biosíntesis , Receptores de Bradiquinina/biosíntesis , Médula Espinal/metabolismo , Animales , Chlorocebus aethiops , Regulación de la Expresión Génica/fisiología , Masculino , Primates , ARN Mensajero/análisis , ARN Mensajero/genética , Receptor de Bradiquinina B1 , Receptores de Bradiquinina/análisis , Receptores de Bradiquinina/genética , Médula Espinal/química
11.
Mech Ageing Dev ; 123(6): 593-601, 2002 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-11850023

RESUMEN

Estradiol's ability to influence neurochemical events that are critical to female reproductive cyclicity and behavior decreases with age. We tested the hypothesis that decreases in estrogen receptor-alpha (ERalpha) and/or ERbeta mRNA explain the brain's declining responsiveness to estradiol. We assessed ERalpha and ERbeta mRNA levels in intact and ovariectomized estradiol-treated rats. ERbeta mRNA was detected in several brain regions and decreased by middle-age in the cerebral cortex and supraoptic nucleus of estradiol-treated rats. ERbeta mRNA levels exhibited a diurnal rhythm in the suprachiasmatic nucleus of young and middle-aged rats and this rhythm was blunted in old rats. We examined ERalpha mRNA in the periventricular preoptic, medial preoptic, ventromedial and arcuate nuclei, and it was decreased only in the periventricular preoptic nucleus of the old rats. In summary, the expression of ERalpha and ERbeta mRNAs is differentially modulated in the aging brain and changes are region specific.


Asunto(s)
Envejecimiento/genética , Encéfalo/metabolismo , Expresión Génica , Receptores de Estrógenos/genética , Envejecimiento/metabolismo , Animales , Corteza Cerebral/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Femenino , Ovariectomía , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Núcleo Supraquiasmático/metabolismo , Núcleo Supraóptico/metabolismo
12.
J Histochem Cytochem ; 50(8): 1031-7, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12133906

RESUMEN

Isotopic in situ hybridization (ISH) has been established as a uniquely powerful tool for the study of gene expression in specific cell types. This technique allows the visualization and quantification of gene expression and gene expression changes in cells. In our study of biological and molecular phenomena, we have increasingly encountered the need to detect small changes in gene expression as well as genes of low abundance, such as the oxytocin receptor (OTR) and the tuberoinfundibular peptide of 39 residues (Tip39). To increase the sensitivity of isotopic ISH for detection of rare mRNAs, we performed ISH on cryostat sections of rat hypothalamus and thalamus with 35S-labeled riboprobes and amplified the signal by hybridizing over 2 nights as well as labeling the probe with both [35S]-UTP and [35S]-ATP. These two methods of enhancement independently and in combination demonstrated a dramatic increase in signal, allowing the visualization of low levels of gene expression previously undetectable by conventional methods.


Asunto(s)
Dimaprit/análogos & derivados , Hibridación in Situ/métodos , Animales , Dimaprit/química , Hipotálamo/metabolismo , Marcaje Isotópico , Masculino , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sondas ARN , ARN sin Sentido , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Radioisótopos de Azufre , Tálamo/metabolismo , Uridina Trifosfato/química
13.
Prog Brain Res ; 139: 15-29, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12436923

RESUMEN

Oxytocin is an important modulator of female reproductive functions including parturition, lactation and maternal behavior, while vasopressin regulates water balance and acts as a neurotransmitter. For decades, it has been suggested that estrogen regulates the production and/or release of oxytocin and vasopressin in the rodent brain. Although several studies demonstrated that estrogen can modulate vasopressin mRNA levels in regions known to contain estrogen receptor (ER), such as the bed nucleus of the stria terminalis and medial amygdala, data from the paraventricular and supraoptic nuclei were inconclusive. Since early immunohistochemical and in situ hybridization studies revealed few, if any, ER containing cells in these hypothalamic nuclei, it was thought that oxytocin and vasopressin were not directly regulated by estrogen. The discovery of a second ER (ER-beta) in the late 1990s suggested that estrogen could act in many brain regions heretofore not considered targets for estrogen action. Initial in situ hybridization studies revealed a wide distribution of ER-beta mRNA in the rat brain including neurons of the supraoptic nucleus and the parvocellular and magnocellular divisions of the paraventricular nucleus. Subsequent double-label in situ hybridization/immunocytochemistry studies showed that ER-beta mRNA was present in oxytocin and vasopressin neurons, with the degree of colocalization being both neuropeptide and region specific. In an attempt to demonstrate that ER-beta mRNA was translated into a biologically active protein, a series of in vivo binding studies were conducted in rats with 125I-estrogen. These data revealed the presence of nuclear estrogen binding sites in neurons of the magnocellular system indicating that ER-beta mRNA was translated into protein. Concurrent studies in mice found that the distribution of ER-beta mRNA and 125I-estrogen binding was similar to rats, although there were some notable differences. For example, ER-beta mRNA and binding were not detected in the mouse supraoptic nucleus and although ER-beta was the principle ER in the paraventricular nucleus, ER-alpha was also present. The prevalence of ERs in the mouse paraventricular nucleus was further investigated using ER-alpha and ER-beta knockout mice for in vivo binding studies with 125I-estrogen. The results of these studies showed that ER-beta was the predominant ER in the paraventricular nucleus and confirmed the presence of ER-beta in other brain regions. Moreover, our group recently generated and characterized several polyclonal antisera raised against the C-terminus of ER-beta. Through the use of these antisera, we have confirmed the presence of ER-beta in the rat paraventricular and supraoptic nuclei and shown that ER-beta is colocalized, in part, with oxytocin and vasopressin. To assess the ability of estrogen to modulate the expression of oxytocin mRNA, ovariectomized rats were treated with vehicle or estradiol and the brains processed for in situ hybridization. The results of these studies revealed that estradiol down-regulated oxytocin mRNA in the rat paraventricular nucleus within 6 h of treatment. Together these data and the observation that some of the oxytocin and vasopressin neurons contain ER-beta suggest that estrogen, acting through ER-beta, may directly regulate oxytocin gene expression. However, since the paraventricular nucleus has many subdivisions with different projections and the degree of colocalization of ER-beta with oxytocin/vasopressin varies among subdivisions, the effects of estrogen treatment on gene expression requires further study to ascertain the role of estrogen action in this neuronal systems.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Oxitocina/genética , Receptores de Estrógenos/fisiología , Núcleo Supraóptico/fisiología , Animales , Receptor beta de Estrógeno , Ratones , ARN Mensajero/genética , Ratas , Vasopresinas/genética
14.
Ann N Y Acad Sci ; 1007: 89-100, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14993043

RESUMEN

Estrogen has been demonstrated to protect against brain injury, neurodegeneration, and cognitive decline. Furthermore, estrogen seems to specifically protect cortical and hippocampal neurons from ischemic injury. Here our data evaluating the neuroprotective effects of estrogens, the selective estrogen receptor modulators (SERMs), and estrogen receptor alpha- and beta-selective ligands in animal models of ischemic injury are discussed. In rats and mice, the middle cerebral artery occlusion (MCAO) model was used as models representing cerebrovascular stroke, while in gerbils the two-vessel occlusion model, resenting acute heart attack, was used. Using focal ischemia in ovariectomized ERalphaKO, ERbetaKO, and wild-type mice, we clearly established that the ERalpha subtype is the critical ER-mediating neuroprotection in mouse focal ischemia. Because of the characteristic blood supply of the gerbil, the gerbil global ischemia model was used to evaluate the neuroprotective effects of estrogen, SERMs, and ERalpha- and ERbeta-selective compounds in the hippocampus. Analysis of neurogranin mRNA, a marker of viability of hippocampal neurons, with in situ hybridization, revealed that estrogen treatment resulted in a complete protection in the CA1 regions not only when administered before, but also when given 1 hour after occlusion. Our in vivo binding studies with (125)I-estrogen in gerbils revealed the presence of nuclear estrogen binding sites primarily in CA1 neurons, but not in the CA3 region, as we saw in rats and mice. Together, these observations demonstrate that estrogen protects from ischemic injury in both the focal and global ischemia models by acting primarily via classical nuclear receptors.


Asunto(s)
Isquemia Encefálica/prevención & control , Modelos Animales de Enfermedad , Estrógenos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Relación Dosis-Respuesta a Droga , Estrógenos/metabolismo , Humanos , Fármacos Neuroprotectores/metabolismo
15.
Neuroreport ; 14(7): 951-4, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12802181

RESUMEN

Disrupted in Schizophrenia-1 (DISC1) was identified as truncated by a balanced translocation segregating with schizophrenia and other major mental illness in a large Scottish family. As a step in evaluating the function of DISC1 and its potential role in human schizophrenia, we have determined its regional expression in the primate brain by in situ hybridization. DISC1 expression is highly localized, with most prominent expression in the dentate gyrus of the hippocampus and lateral septum, and lower levels of expression in the cerebral cortex, amygdala, paraventricular hypothalamus, cerebellum, interpeduncular nucleus, and subthalamic nucleus. Given that many of these regions have been implicated in schizophrenia pathogenesis, these results suggest brain circuits through which DISC1 truncation may predispose to schizophrenia.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Sistema Límbico/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Esquizofrenia/metabolismo , Animales , Autorradiografía , Chlorocebus aethiops , Humanos , Hibridación in Situ , Masculino , Proteínas del Tejido Nervioso/genética
16.
Exp Neurol ; 223(2): 394-400, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19744481

RESUMEN

Amyloid plaque deposition in the brain is a hallmark of Alzheimer's disease, but recent evidence indicates that the disease may be primarily caused by soluble amyloid-beta (1-42) (Abeta) oligomers or Abeta-derived diffusible ligands (ADDLs). ADDLs induce cognitive deficits in animal models and are thought to assemble in vitro by a mechanism apart from plaque formation. To investigate the in vivo relationship of ADDLs and plaques, biotin-labeled ADDLs (bADDLs) or amylin oligomers (bAMs) were injected into the hippocampus of hAPP overexpressing mice. The brains were collected 1 or 5 weeks after the last treatment and were processed for immunohistochemistry. Staining of tissue 1 week post-treatment showed bADDLs had diffused throughout the tissue and incorporated into plaques. Additionally, small deposits of thioflavin S-negative bADDLs were observed. At 5 weeks post-treatment, thioflavin S-positive material continued to accumulate around plaques containing bADDLs. Thioflavin S-positive material also accrued around bADDL deposits, implying that bADDLs were capable of seeding new plaques. In contrast, bAMs cleared from the brain and did not accumulate in plaques. Together, these data indicate that ADDLs are able to contribute to in vivo plaque formation in a peptide-specific manner.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Amiloide/química , Amiloide/genética , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Animales , Benzotiazoles , Biotina , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Polipéptido Amiloide de los Islotes Pancreáticos , Ligandos , Masculino , Ratones , Ratones Transgénicos , Microscopía de Fuerza Atómica , Peso Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Tiazoles/metabolismo
17.
Nat Biotechnol ; 28(5): 470-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20458317

RESUMEN

The capacities of urinary trefoil factor 3 (TFF3) and urinary albumin to detect acute renal tubular injury have never been evaluated with sufficient statistical rigor to permit their use in regulated drug development instead of the current preclinical biomarkers serum creatinine (SCr) and blood urea nitrogen (BUN). Working with rats, we found that urinary TFF3 protein levels were markedly reduced, and urinary albumin were markedly increased in response to renal tubular injury. Urinary TFF3 levels did not respond to nonrenal toxicants, and urinary albumin faithfully reflected alterations in renal function. In situ hybridization localized TFF3 expression in tubules of the outer stripe of the outer medulla. Albumin outperformed either SCr or BUN for detecting kidney tubule injury and TFF3 augmented the potential of BUN and SCr to detect kidney damage. Use of urinary TFF3 and albumin will enable more sensitive and robust diagnosis of acute renal tubular injury than traditional biomarkers.


Asunto(s)
Albuminuria/orina , Biomarcadores Farmacológicos/orina , Enfermedades Renales , Túbulos Renales/efectos de los fármacos , Neuropéptidos/orina , Animales , Carbapenémicos/toxicidad , Cisplatino/toxicidad , Gentamicinas/toxicidad , Histocitoquímica , Glicósidos Iridoides , Iridoides/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/diagnóstico , Túbulos Renales/patología , Modelos Logísticos , Curva ROC , Ratas , Factor Trefoil-3
18.
Neurobiol Aging ; 29(9): 1334-47, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17403556

RESUMEN

Alzheimer's disease (AD) is characterized by presence of extracellular fibrillar A beta in amyloid plaques, intraneuronal neurofibrillary tangles consisting of aggregated hyperphosphorylated tau and elevated brain levels of soluble A beta oligomers (ADDLs). A major question is how these disparate facets of AD pathology are mechanistically related. Here we show that, independent of the presence of fibrils, ADDLs stimulate tau phosphorylation in mature cultures of hippocampal neurons and in neuroblastoma cells at epitopes characteristically hyperphosphorylated in AD. A monoclonal antibody that targets ADDLs blocked their attachment to synaptic binding sites and prevented tau hyperphosphorylation. Tau phosphorylation was blocked by the Src family tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7(t-butyl)pyrazol(3,4-D)pyramide (PP1), and by the phosphatidylinositol-3-kinase inhibitor LY294002. Significantly, tau hyperphosphorylation was also induced by a soluble aqueous extract containing A beta oligomers from AD brains, but not by an extract from non-AD brains. A beta oligomers have been increasingly implicated as the main neurotoxins in AD, and the current results provide a unifying mechanism in which oligomer activity is directly linked to tau hyperphosphorylation in AD pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/administración & dosificación , Hipocampo/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Células Cultivadas , Hipocampo/efectos de los fármacos , Humanos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/administración & dosificación , Fosforilación/efectos de los fármacos
19.
Proc Natl Acad Sci U S A ; 103(47): 17967-72, 2006 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-17098871

RESUMEN

Rare familial forms of Alzheimer's disease (AD) are thought to be caused by elevated proteolytic production of the Abeta42 peptide from the beta-amyloid-precursor protein (APP). Although the pathogenesis of the more common late-onset AD (LOAD) is not understood, BACE1, the protease that cleaves APP to generate the N terminus of Abeta42, is more active in patients with LOAD, suggesting that increased amyloid production processing might also contribute to the sporadic disease. Using high-throughput siRNA screening technology, we assessed 15,200 genes for their role in Abeta42 secretion and identified leucine-rich repeat transmembrane 3 (LRRTM3) as a neuronal gene that promotes APP processing by BACE1. siRNAs targeting LRRTM3 inhibit the secretion of Abeta40, Abeta42, and sAPPbeta, the N-terminal APP fragment produced by BACE1 cleavage, from cultured cells and primary neurons by up to 60%, whereas overexpression increases Abeta secretion. LRRTM3 is expressed nearly exclusively in the nervous system, including regions affected during AD, such as the dentate gyrus. Furthermore, LRRTM3 maps to a region of chromosome 10 linked to both LOAD and elevated plasma Abeta42, and is structurally similar to a family of neuronal receptors that includes the NOGO receptor, an inhibitor of neuronal regeneration and APP processing. Thus, LRRTM3 is a functional and positional candidate gene for AD, and, given its receptor-like structure and restricted expression, a potential therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Cromosomas Humanos Par 10 , Activación Enzimática , Humanos , Proteínas Repetidas Ricas en Leucina , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares , Fragmentos de Péptidos/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
20.
Exp Neurol ; 190(2): 468-77, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15530885

RESUMEN

Estrogen attenuates the loss of dopamine from striatum and dopamine neurons from the substantia nigra (SNc) in animal models of Parkinson's disease. Interestingly, estrogen receptors (ERalpha and ERbeta) are thought to be sparse or absent in mouse striatum and SNc. Since ERalpha is markedly induced in rodent cortex after ischemic injury, the present studies evaluated changes in ERs after acute treatment with the dopamine neurotoxin MPTP. Mice were injected daily with estradiol, injected with MPTP on day 6, and brains collected on day 9 or 13. Immunocytochemistry was then used to assess tyrosine hydroxylase (TH) in striatum and investigate the localization of ERalpha and ERbeta in the striatum and SNc. In addition, cryostat sections were hybridized with a riboprobe complementary to ERalpha or ERbeta mRNA. Evaluation of TH immunoreactivity revealed a dense network of fibers in the striatum of vehicle-treated animals, while a near complete loss of terminals was seen after MPTP treatment. When, however, mice were pretreated with estradiol, the MPTP-induced loss of TH was attenuated. Evaluation of ERalpha and ERbeta in the SNc and striatum demonstrated a sparse localization of both ERs in vehicle-treated mice, a pattern that did not change in animals treated with vehicle/MPTP or estradiol/MPTP. These data demonstrate that ERs are sparse in the mouse striatum and SNc and show that this pattern does not change after MPTP intoxication. This observation and the finding that estrogen affords some protection against MPTP suggest that estrogen may act via nuclear receptor independent mechanisms to protect dopamine neurons from toxins such as MPTP.


Asunto(s)
Estrógenos/farmacología , Intoxicación por MPTP/patología , Neuronas/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Sustancia Negra/patología , Animales , Autorradiografía , Castración , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Neuronas/patología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA