Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 21(3)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33267040

RESUMEN

This paper investigates the universality of the Eulerian velocity structure functions using velocity fields obtained from the stereoscopic particle image velocimetry (SPIV) technique in experiments and direct numerical simulations (DNS) of the Navier-Stokes equations. It shows that the numerical and experimental velocity structure functions up to order 9 follow a log-universality (Castaing et al. Phys. D Nonlinear Phenom. 1993); this leads to a collapse on a universal curve, when units including a logarithmic dependence on the Reynolds number are used. This paper then investigates the meaning and consequences of such log-universality, and shows that it is connected with the properties of a "multifractal free energy", based on an analogy between multifractal and thermodynamics. It shows that in such a framework, the existence of a fluctuating dissipation scale is associated with a phase transition describing the relaminarisation of rough velocity fields with different Hölder exponents. Such a phase transition has been already observed using the Lagrangian velocity structure functions, but was so far believed to be out of reach for the Eulerian data.

2.
Phys Rev E ; 109(6-2): 065108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39020992

RESUMEN

We construct a formally time-reversible, one-dimensional forced Burgers equation by imposing a global constraint of energy conservation, wherein the constant viscosity is modified to a fluctuating state-dependent dissipation coefficient. The system exhibits dynamical properties which bear strong similarities with those observed for the Burgers equation and can be understood using the dynamics of the poles, shocks, and truncation effects, such as tygers. A complex interplay of these give rise to interesting statistical regimes ranging from hydrodynamic behavior to a completely thermalized warm phase. The end of the hydrodynamic regime is associated with the appearance of a shock in the solution and a continuous transition leading to a truncation-dependent state. Beyond this, the truncation effects such as tygers and the appearance of secondary discontinuity at the resonance point in the solution strongly influence the statistical properties. These disappear at the second transition, at which the global quantities exhibit a jump and attain values that are consistent with the establishment of a quasiequilibrium state characterized by energy equipartition among the Fourier modes. Our comparative analysis shows that the macroscopic statistical properties of the formally time-reversible system and the Burgers equation are equivalent in all the regimes, irrespective of the truncation effects, and this equivalence is not just limited to the hydrodynamic regime, thereby further strengthening the Gallavotti's equivalence conjecture. The properties of the system are further examined by inspecting the complex space singularities in the velocity field of the Burgers equation. Furthermore, an effective theory is proposed to describe the discontinuous transition.

3.
Phys Rev E ; 108(1-2): 015102, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583143

RESUMEN

We examine the conjecture of equivalence of nonequilibrium ensembles for turbulent flows in two dimensions in a dual-cascade setup. We construct a formally time-reversible Navier-Stokes equation in two dimensions by imposing global constraints of energy and enstrophy conservation. A comparative study of the statistical properties of its solutions with those obtained from the standard Navier-Stokes equations clearly shows that a formally time-reversible system is able to reproduce the features of a two-dimensional turbulent flow. Statistical quantities based on one- and two-point measurements show an excellent agreement between the two systems for the inverse- and direct-cascade regions. Moreover, we find that the conjecture holds very well for two-dimensional turbulent flows with both conserved energy and enstrophy at finite Reynolds number.

4.
Phys Rev E ; 108(4-2): 045103, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978641

RESUMEN

We obtain the von Kármán-Howarth relation for the stochastically forced three-dimensional (3D) Hall-Vinen-Bekharevich-Khalatnikov (HVBK) model of superfluid turbulence in helium (^{4}He) by using the generating-functional approach. We combine direct numerical simulations (DNSs) and analytical studies to show that, in the statistically steady state of homogeneous and isotropic superfluid turbulence, in the 3D HVBK model, the probability distribution function (PDF) P(γ), of the ratio γ of the magnitude of the normal fluid velocity and superfluid velocity, has power-law tails that scale as P(γ)∼γ^{3}, for γ≪1, and P(γ)∼γ^{-3}, for γ≫1. Furthermore, we show that the PDF P(θ) of the angle θ between the normal-fluid velocity and superfluid velocity exhibits the following power-law behaviors: P(θ)∼θ for θ≪θ_{*} and P(θ)∼θ^{-4} for θ_{*}≪θ≪1, where θ_{*} is a crossover angle that we estimate. From our DNSs we obtain energy, energy-flux, and mutual-friction-transfer spectra, as well as the longitudinal-structure-function exponents for the normal fluid and the superfluid, as a function of the temperature T, by using the experimentally determined mutual-friction coefficients for superfluid helium ^{4}He, so our results are of direct relevance to superfluid turbulence in this system.

5.
Phys Rev E ; 100(4-1): 043104, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31770927

RESUMEN

We present a comprehensive study of the statistical features of a three-dimensional (3D) time-reversible truncated Navier-Stokes (RNS) system, wherein the standard viscosity ν is replaced by a fluctuating thermostat that dynamically compensates for fluctuations in the total energy. We analyze the statistical features of the RNS steady states in terms of a non-negative dimensionless control parameter R_{r}, which quantifies the balance between the fluctuations of kinetic energy at the forcing length scale ℓ_{f} and the total energy E_{0}. For small R_{r}, the RNS equations are found to produce "warm" stationary statistics, e.g., characterized by the partial thermalization of the small scales. For large R_{r}, the stationary solutions have features akin to standard hydrodynamic ones: they have compact energy support in k space and are essentially insensitive to the truncation scale k_{max}. The transition between the two statistical regimes is observed to be smooth but rather sharp. Using insights from a diffusion model of turbulence (Leith model), we argue that the transition is in fact akin to a continuous second-order phase transition, where R_{r} indeed behaves as a thermodynamic control parameter, e.g., a temperature. A relevant order parameter can be suitably defined in terms of a (normalized) enstrophy, while the symmetry-breaking parameter h is identified as (one over) the truncation scale k_{max}. We find that the signatures of the phase transition close to the critical point R_{r}^{★} can essentially be deduced from a heuristic mean-field Landau free energy. This point of view allows us to reinterpret the relevant asymptotics in which the dynamical ensemble equivalence conjectured by Gallavotti [Phys. Lett. A 223, 91 (1996)PYLAAG0375-960110.1016/S0375-9601(96)00729-3] could hold true. We argue that Gallavotti's limit is precisely the joint limit R_{r}→[over >]R_{r}^{★} and h→[over >]0, with the overset symbol ">" indicating that those limits are approached from above. The limit therefore relates to the statistical features at the critical point. In this regime, our numerics indicate that the low-order statistics of the 3D RNS are indeed qualitatively similar to those observed in direct numerical simulations of the standard Navier-Stokes equations with viscosity chosen so as to match the average value of the reversible thermostat. This result suggests that Gallavotti's equivalence conjecture could indeed be of relevance to model 3D turbulent statistics, and provides a clear guideline for further numerical investigations involving higher resolutions.

6.
Phys Rev E ; 94(4-1): 043101, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27841527

RESUMEN

We examine the multiscaling behavior of the normal- and superfluid-velocity structure functions in three-dimensional superfluid turbulence by using a shell model for the three-dimensional (3D) Hall-Vinen-Bekharevich-Khalatnikov (HVBK) equations. Our 3D-HVBK shell model is based on the Gledzer-Okhitani-Yamada shell model. We examine the dependence of the multiscaling exponents on the normal-fluid fraction and the mutual-friction coefficients. Our extensive study of the 3D-HVBK shell model shows that the multiscaling behavior of the velocity structure functions in superfluid turbulence is more complicated than it is in fluid turbulence.

7.
Phys Rev E ; 94(6-1): 061101, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085312

RESUMEN

It is shown that the truncated Euler equation (TEE), i.e., a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a confined two-dimensional flow obeying Navier-Stokes equation (NSE) with bottom friction and a spatially periodic forcing. The random reversals of the NSE large-scale circulation on the turbulent background involve bifurcations of the probability distribution function of the large-scale circulation. We demonstrate that these NSE bifurcations are described by the related TEE microcanonical distribution which displays transitions from Gaussian to bimodal and broken ergodicity. A minimal 13-mode model reproduces these results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA