Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Neurosci ; 43(7): 1143-1153, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36732069

RESUMEN

Cerebral creatine deficiency syndrome (CCDS) is an inborn error of metabolism characterized by intellectual delays, seizures, and autistic-like behavior. However, the role of endogenously synthesized creatine on CNS development and function remains poorly understood. Here, magnetic resonance spectroscopy of adult mouse brains from both sexes revealed creatine synthesis is dependent on the expression of the enzyme, guanidinoacetate methyltransferase (GAMT). To identify Gamt-expressed cells, and how Gamt affects postnatal CNS development, we generated a mouse line by knocking-in a GFP, which is expressed on excision of Gamt We found that Gamt is expressed in mature oligodendrocytes during active myelination in the developing postnatal CNS. Homozygous deletion of Gamt resulted in significantly reduced mature oligodendrocytes and delayed myelination in the corpus callosum. Moreover, the absence of endogenous creatine resulted in altered AMPK signaling in the brain, reduced brain creatine kinase expression in cortical neurons, and signs of axonal damage. Experimental demyelination in mice after tamoxifen-induced conditional deletion of Gamt in oligodendrocyte lineage cells resulted in delayed maturation of oligodendrocytes and myelin coverage in lesions. Moreover, creatine and cyclocreatine supplementation can enhance remyelination after demyelination. Our results suggest endogenously synthesized creatine controls the bioenergetic demand required for the timely maturation of oligodendrocytes during postnatal CNS development, and that delayed myelination and altered CNS energetics through the disruption of creatine synthesis might contribute to conditions, such as CCDS.SIGNIFICANCE STATEMENT Cerebral creatine deficiency syndrome is a rare disease of inborn errors in metabolism, which is characterized by intellectual delays, seizures, and autism-like behavior. We found that oligodendrocytes are the main source of endogenously synthesized creatine in the adult CNS, and the loss of endogenous creatine synthesis led to delayed myelination. Our study suggests impaired cerebral creatine synthesis affects the timing of myelination and may impact brain bioenergetics.


Asunto(s)
Enfermedades Desmielinizantes , Discapacidad Intelectual , Masculino , Femenino , Ratones , Animales , Creatina/metabolismo , Homocigoto , Eliminación de Secuencia , Oligodendroglía/metabolismo , Discapacidad Intelectual/genética , Enfermedades Desmielinizantes/patología , Convulsiones
2.
J Biol Chem ; 299(8): 104975, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429506

RESUMEN

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , NAD/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , Nucleotidiltransferasas/metabolismo , Inflamación/metabolismo , Interferones/metabolismo
3.
Am J Pathol ; 190(1): 48-56, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31839145

RESUMEN

Kv11.1 potassium channels are essential for heart repolarization. Prescription medication that blocks Kv11.1 channels lengthens the ventricular action potential and causes cardiac arrhythmias. Surprisingly little is known about the Kv11.1 channel expression and function in the lung tissue. Here we report that Kv11.1 channels were abundantly expressed in the large pulmonary arteries (PAs) of healthy lung tissues from humans and rats. Kv11.1 channel expression was increased in the lungs of humans affected by chronic obstructive pulmonary disease-associated pulmonary hypertension and in the lungs of rats with pulmonary arterial hypertension (PAH). In healthy lung tissues from humans and rats, Kv11.1 channels were confined to the large PAs. In humans with chronic obstructive pulmonary disease-associated pulmonary hypertension and in rats with PAH, Kv11.1 channels were expressed in both the large and small PAs. The increase in Kv11.1 channel expression closely followed the time-course of the development of pulmonary vascular remodeling in PAH rats. Treatment of PAH rats with dofetilide, an Kv11.1 channel blocker approved by the US Food and Drug Administration for use in the treatment of arrythmia, inhibited PAH-associated pulmonary vascular remodeling. Taken together, the findings from this study uncovered a novel role of Kv11.1 channels in lung function and their potential as new drug targets in the treatment of pulmonary hypertension. The protective effect of dofetilide raises the possibility of repurposing this antiarrhythmic drug for the treatment of patients with pulmonary hypertension.


Asunto(s)
Arritmias Cardíacas/prevención & control , Canal de Potasio ERG1/antagonistas & inhibidores , Músculo Liso Vascular/efectos de los fármacos , Fenetilaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Hipertensión Arterial Pulmonar/complicaciones , Sulfonamidas/farmacología , Remodelación Vascular/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/patología , Estudios de Casos y Controles , Canal de Potasio ERG1/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Pronóstico , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Ratas Sprague-Dawley
4.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567524

RESUMEN

Alzheimer's disease is a chronic neurodegenerative disorder and represents the main cause of dementia globally. Currently, the world is suffering from the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of patients with Alzheimer's disease. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer's disease and ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease, and brains with the disease examined in this study also exhibited higher carbonylated proteins, as well as an increased thiol oxidation state of peroxiredoxin 6 (Prx6). A moderate positive correlation was found between the increased ACE2 protein expression and oxidative stress in brains with Alzheimer's disease. In summary, the present study reveals the relationships between Alzheimer's disease and ACE2, the receptor for SARS-CoV-2. These results suggest the importance of carefully monitoring patients with both Alzheimer's disease and COVID-19 in order to identify higher viral loads in the brain and long-term adverse neurological consequences.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , COVID-19/metabolismo , Hipocampo/metabolismo , Pandemias , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , Regulación hacia Arriba , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Autopsia , COVID-19/complicaciones , COVID-19/virología , Hipocampo/patología , Humanos , Oxidación-Reducción , Estrés Oxidativo , Peroxiredoxina VI/metabolismo , Placa Amiloide/metabolismo , Carbonilación Proteica , Índice de Severidad de la Enfermedad , Internalización del Virus
5.
Electromagn Biol Med ; 40(4): 475-487, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34392747

RESUMEN

We compare the effects of an extremely low-frequency electromagnetic field (EMF) with the chemotherapeutic agent doxorubicin (DOX) on tumor growth and the hepatic redox state in Walker-256 carcinosarcoma-bearing rats. Animals were divided into five groups with one control (no tumor) and four tumor-bearing groups: no treatment, DOX, DOX combined with EMF and EMF. While DOX and DOX + EMF provided greater inhibition of tumor growth, treatment with EMF alone resulted in some level of antitumor effect (p < .05). Superoxide dismutase, catalase activity and glutathione content were significantly decreased in the liver of tumor-bearing animals as compared with the control group (p < .05). The decreases in antioxidant defenses accompanied histological findings of suspected liver damage. However, hepatic levels of thiobarbituric acid reactive substances, an indicator of lipid peroxidation, were three times lower in EMF and DOX + EMF groups than in no treatment and DOX (p < .05). EMF and DOX + EMF showed significantly lower activity of serum ALT than DOX alone (p < .05). These results indicate that EMF treatment can inhibit tumor growth, causing less pronounced oxidative stress damage to the liver. Therefore, EMF can be used as a therapeutic strategy to influence the hepatic redox state and combat cancer with reduced side-effects.


Asunto(s)
Carcinosarcoma , Campos Electromagnéticos , Animales , Doxorrubicina/farmacología , Peroxidación de Lípido , Hígado , Estrés Oxidativo , Ratas
6.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348552

RESUMEN

Ischemic stroke is a major cause of death among patients with systemic hypertension. The narrowing of the lumen of the brain vasculature contributes to the increased incidence of stroke. While hyalinosis represents the major pathological lesions contributing to vascular lumen narrowing and stroke, the pathogenic mechanism of brain vascular hyalinosis has not been well characterized. Thus, the present study examined the postmortem brain vasculature of human patients who died of ischemic stroke due to systemic hypertension. Hematoxylin and eosin staining and immunohistochemistry showed the occurrence of brain vascular hyalinosis with infiltrated plasma proteins along with the narrowing of the vasa vasorum and oxidative stress. Transmission electron microscopy revealed endothelial cell bulge protrusion into the vasa vasorum lumen and the occurrence of endocytosis in the vasa vasorum endothelium. The treatment of cultured microvascular endothelial cells with adrenaline also promoted the formation of the bulge as well as endocytic vesicles. The siRNA knockdown of sortin nexin-9 (a mediator of clathrin-mediated endocytosis) inhibited adrenaline-induced endothelial cell bulge formation. Adrenaline promoted protein-protein interactions between sortin nexin-9 and neural Wiskott-Aldrich syndrome protein (a regulator of actin polymerization). Spontaneously hypertensive stroke-prone rats also exhibited lesions indicative of brain vascular hyalinosis, the endothelial cell protrusion into the lumen of the vasa vasorum, and endocytosis in vasa vasorum endothelial cells. We propose that endocytosis-dependent endothelial cell bulge protrusion narrows the vasa vasorum, resulting in ischemic oxidative damage to cerebral vessels, the formation of hyalinosis, the occurrence of ischemic stroke, and death in systemic hypertension patients.


Asunto(s)
Isquemia Encefálica/etiología , Isquemia Encefálica/mortalidad , Diarrea/etiología , Diarrea/patología , Enfermedades Hereditarias del Ojo/etiología , Enfermedades Hereditarias del Ojo/patología , Hipertensión/complicaciones , Enfermedades Intestinales/etiología , Enfermedades Intestinales/patología , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/mortalidad , Anomalías Cutáneas/etiología , Anomalías Cutáneas/patología , Vasa Vasorum/patología , Enfermedades Vasculares/etiología , Enfermedades Vasculares/patología , Anciano , Anciano de 80 o más Años , Animales , Autopsia , Encéfalo/patología , Isquemia Encefálica/patología , Células Cultivadas , Endocitosis/genética , Células Endoteliales/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Accidente Cerebrovascular Isquémico/patología , Masculino , Persona de Mediana Edad , Estrés Oxidativo/genética , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Nexinas de Clasificación/genética , Transfección
7.
J Pharmacol Exp Ther ; 363(1): 20-34, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28760737

RESUMEN

Pulmonary arterial hypertension remains a fatal disease despite the availability of approved vasodilators. Since vascular remodeling contributes to increased pulmonary arterial pressure, new agents that reduce the thickness of pulmonary vascular walls have therapeutic potential. Thus, antitumor agents that are capable of killing cells were investigated. Testing of various antitumor drugs identified that docetaxel is a superior drug for killing proliferating pulmonary artery smooth muscle cells compared with other drugs, including gemcitabine, methotrexate, and ifosfamide. The administration of docetaxel to rats with severe pulmonary arterial hypertension reversed pulmonary vascular remodeling and reduced right ventricular pressure. Docetaxel was found to decrease autophagy as monitored by LC3B-II and p62 expression. The small interfering RNA knockdown of Beclin-1 or LC3B potentiated docetaxel-induced cell death, and knocking down p62 inhibited the docetaxel effects. The suppressed autophagic process is due to the ability of docetaxel to decrease Beclin-1 protein expression in a proteasome-dependent manner. Mass spectrometry identified a novel docetaxel-inducible Beclin-1 binding protein, namely, myosin-9. Knocking down myosin-9 inhibited docetaxel-induced cell death. In damaged right ventricles of pulmonary arterial hypertension rats, docetaxel remarkably promoted the resolution of fibrosis and the regeneration of myocardium. Thus, docetaxel is capable of reversing pulmonary vascular remodeling and resolving right ventricle fibrosis and is a promising therapeutic agent for the treatment of pulmonary arterial hypertension and right heart failure.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Pulmón/irrigación sanguínea , Taxoides/farmacología , Remodelación Vascular/efectos de los fármacos , Antineoplásicos/efectos adversos , Beclina-1/metabolismo , Docetaxel , Fibrosis , Células HeLa , Humanos , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Proteolisis/efectos de los fármacos , Taxoides/efectos adversos
8.
Adv Exp Med Biol ; 967: 315-323, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29047095

RESUMEN

Pulmonary hypertension is a devastating disease without cure. The major cause of death among patients with pulmonary hypertension is right heart failure; however, biology of the right heart is not well understood. This lack of knowledge interferes with developing effective therapeutic strategies to treat these patients. In this chapter, we summarize studies performed in our laboratory that investigated the role of redox signaling in the regulation of the right ventricle (RV), using rat models of experimental pulmonary hypertension and right heart failure. Specifically, this chapter covers the topics of (a) redox regulation of serotonin signaling in the RV, (b) the carbonylation-degradation pathway of signal transduction in RV hypertrophy and (c) oxidative modifications in the RV of the SU5416/ovalbumin model of pulmonary arterial hypertension. These studies revealed that redox regulation in the RV is complex and simply giving lots of antioxidants to patients will unlikely benefit them. Deeper understanding of specific and selective redox mechanisms should shed light on how we can develop therapeutic strategies by modulating redox reactions.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/fisiopatología , Arteria Pulmonar/fisiopatología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Humanos , Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/metabolismo , Metabolómica/métodos , Oxidación-Reducción , Péptidos/metabolismo , Carbonilación Proteica , Proteolisis , Arteria Pulmonar/metabolismo , Ratas
9.
Life (Basel) ; 14(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398788

RESUMEN

Neurological disorders have been reported in a large number of coronavirus disease 2019 (COVID-19) patients, suggesting that this disease may have long-term adverse neurological consequences. COVID-19 occurs from infection by a positive-sense single-stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The membrane fusion protein of SARS-CoV-2, the spike protein, binds to its human host receptor, angiotensin-converting enzyme 2 (ACE2), to initiate membrane fusion between the virus and host cell. The spike protein of SARS-CoV-2 contains the furin protease recognition site and its cleavage enhances the infectivity of this virus. The binding of SARS-CoV-2 to the ACE2 receptor has been shown to downregulate ACE2, thereby increasing the levels of pathogenic angiotensin II (Ang II). The furin protease cleaves between the S1 subunit of the spike protein with the binding domain toward ACE2 and the S2 subunit with the transmembrane domain that anchors to the viral membrane, and this activity releases the S1 subunit into the blood circulation. The released S1 subunit of the spike protein also binds to and downregulates ACE2, in turn increasing the level of Ang II. Considering that a viral particle contains many spike protein molecules, furin-dependent cleavage would release many free S1 protein molecules, each of which can downregulate ACE2, while infection with a viral particle only affects one ACE2 molecule. Therefore, the furin-dependent release of S1 protein would dramatically amplify the ability to downregulate ACE2 and produce Ang II. We hypothesize that this amplification mechanism that the virus possesses, but not the infection per se, is the major driving force behind COVID-19-associated neurological disorders.

10.
NPJ Regen Med ; 9(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167866

RESUMEN

Regulation of myeloid cell activity is critical for successful myelin regeneration (remyelination) in demyelinating diseases, such as multiple sclerosis (MS). Here, we show aromatic alpha-keto acids (AKAs) generated from the amino acid oxidase, interleukin-4 induced 1 (IL4I1), promote efficient remyelination in mouse models of MS. During remyelination, myeloid cells upregulated the expression of IL4I1. Conditionally knocking out IL4I1 in myeloid cells impaired remyelination efficiency. Mice lacking IL4I1 expression exhibited a reduction in the AKAs, phenylpyruvate, indole-3-pyruvate, and 4-hydroxyphenylpyruvate, in remyelinating lesions. Decreased AKA levels were also observed in people with MS, particularly in the progressive phase when remyelination is impaired. Oral administration of AKAs modulated myeloid cell-associated inflammation, promoted oligodendrocyte maturation, and enhanced remyelination in mice with focal demyelinated lesions. Transcriptomic analysis revealed AKA treatment induced a shift in metabolic pathways in myeloid cells and upregulated aryl hydrocarbon receptor activity in lesions. Our results suggest myeloid cell-associated aromatic amino acid metabolism via IL4I1 produces AKAs in demyelinated lesions to enable efficient remyelination. Increasing AKA levels or targeting related pathways may serve as a strategy to facilitate the regeneration of myelin in inflammatory demyelinating conditions.

11.
Diseases ; 11(3)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37754310

RESUMEN

BACKGROUND: We herein report two cases of sudden onset symptomatic pulmonary hypertension after coronavirus disease 2019 (COVID-19) vaccination. CASE SUMMARY: Pulmonary hypertension in previously healthy adult males occurred within three weeks of receiving the second dose of the Pfizer (BNT162b2) mRNA COVID-19 vaccine from different lots. Both patients experienced a sudden onset of severe fatigue and dyspnea on exertion with negative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing. The diagnosis was made by serial transthoracic echocardiography in the first case and by both transthoracic echocardiography and right heart catheterization in the second. Both cases resulted in functional limitations and likely permanent organ damage. No evidence of pulmonary emboli was detected in either case. DISCUSSION: Pulmonary hypertension is a serious disease characterized by damage to lung vasculature and restricted blood flow through narrowed arteries from the right to left heart. The onset of symptoms is typically insidious, progressive and incurable, leading to right heart failure and premature death. The World Health Organization (WHO) classifies pulmonary hypertension into five categories and recently re-defined it as a resting mean pulmonary artery pressure greater than 20 mmHg. Sudden onset pulmonary hypertension would only be expected in the settings of surgical pneumonectomy or massive pulmonary emboli with compromise of at least 50% of the lung vasculature. We present here two novel cases of sudden onset pulmonary hypertension without evidence of pulmonary emboli, both of which occurred after receiving a COVID-19 mRNA vaccine.

12.
Med Hypotheses ; 147: 110483, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33444904

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the current pandemic of coronavirus disease 2019 (COVID-19) that have killed over one million people worldwide so far. To date, over forty million people have officially been identified to be infected with this virus with less than 3% death rate. Since many more people are expected to have been infected with this virus without the official diagnosis, the number of people who have recovered from the SARS-CoV-2 infection should be substantial. Given the large number of people recovered from either the mild SARS-CoV-2 infection or more severe COVID-19 conditions, it is critical to understand the long-term consequences of the infection by this virus. Our histological evaluations revealed that patients died of COVID-19 exhibited thickened pulmonary vascular walls, one important hallmark of pulmonary arterial hypertension (PAH). By contrast, such pulmonary vascular remodeling lesions were not found in patients died of SARS-CoV-1 during the 2002-2004 SARS outbreak or due to the infection by H1N1 influenza. The advancement in the treatment for the human immunodeficiency virus (HIV) infection has been remarkable that HIV-infected individuals now live for a long time, in turn revealing that these individuals become susceptible to developing PAH, a fatal condition. We herein hypothesize that SARS-CoV-2 is another virus that is capable to triggering the increased susceptibility of infected individuals to developing PAH in the future. Given the large number of people being infected with SARS-CoV-2 during this pandemic and that most people recover from severe, mild or asymptomatic conditions, it is imperative to generate scientific information on how the health of recovered individuals may be affected long-term. PAH is one lethal consequence that should be considered and needs to be monitored. This may also foster the research on developing therapeutic agents to prevent PAH, which has not so far been successful.


Asunto(s)
COVID-19/complicaciones , Hipertensión Arterial Pulmonar/complicaciones , Animales , COVID-19/fisiopatología , COVID-19/virología , Comorbilidad , Brotes de Enfermedades , Susceptibilidad a Enfermedades , Endotelio Vascular/patología , Humanos , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/complicaciones , Pulmón/virología , Modelos Teóricos , Ucrania/epidemiología
13.
Vascul Pharmacol ; 137: 106823, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33232769

RESUMEN

Currently, the world is suffering from the pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. So far, 60 million people have been infected with SARS-CoV-2, and 1.4 million people have died because of COVID-19 worldwide, causing serious health, economical, and sociological problems. However, the mechanism of the effect of SARS-CoV-2 on human host cells has not been defined. The present study reports that the SARS-CoV-2 spike protein alone without the rest of the viral components is sufficient to elicit cell signaling in lung vascular cells. The treatment of human pulmonary artery smooth muscle cells or human pulmonary artery endothelial cells with recombinant SARS-CoV-2 spike protein S1 subunit (Val16 - Gln690) at 10 ng/ml (0.13 nM) caused an activation of MEK phosphorylation. The activation kinetics was transient with a peak at 10 min. The recombinant protein that contains only the ACE2 receptor-binding domain of the SARS-CoV-2 spike protein S1 subunit (Arg319 - Phe541), on the other hand, did not cause this activation. Consistent with the activation of cell growth signaling in lung vascular cells by the SARS-CoV-2 spike protein, pulmonary vascular walls were found to be thickened in COVID-19 patients. Thus, SARS-CoV-2 spike protein-mediated cell growth signaling may participate in adverse cardiovascular/pulmonary outcomes, and this mechanism may provide new therapeutic targets to combat COVID-19.


Asunto(s)
COVID-19/metabolismo , Células Endoteliales/metabolismo , Pulmón/irrigación sanguínea , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Células Cultivadas , Células Endoteliales/patología , Células Endoteliales/virología , Interacciones Huésped-Patógeno , Humanos , Cinética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/virología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/virología , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/virología , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Transducción de Señal
14.
bioRxiv ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33052346

RESUMEN

Alzheimer's disease is a chronic neurodegenerative disorder and represents the main cause of dementia. Currently, the world is suffering from the pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of Alzheimer's disease patients. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer's disease and the ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease, and Alzheimer's disease brains examined in this study also exhibited higher carbonylated proteins as well as increased thiol oxidation state of peroxiredoxin 6 (Prx6). The positive correlation was found between the increased ACE2 protein expression and oxidative stress in Alzheimer's disease brain. Thus, the present study reveals the relationships between Alzheimer's disease and ACE2, the receptor for SARS-CoV-2. These results warrant monitoring Alzheimer's disease patients with COVID-19 carefully for the possible higher viral load in the brain and long-term adverse neurological consequences.

15.
bioRxiv ; 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33052333

RESUMEN

Currently, the world is suffering from the pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. So far, 30 million people have been infected with SARS-CoV-2, and nearly 1 million people have died because of COVID-19 worldwide, causing serious health, economical, and sociological problems. However, the mechanism of the effect of SARS-CoV-2 on human host cells has not been defined. The present study reports that the SARS-CoV-2 spike protein alone without the rest of the viral components is sufficient to elicit cell signaling in lung vascular cells. The treatment of human pulmonary artery smooth muscle cells or human pulmonary artery endothelial cells with recombinant SARS-CoV-2 spike protein S1 subunit (Val16 - Gln690) at 10 ng/ml (0.13 nM) caused an activation of MEK phosphorylation. The activation kinetics was transient with a peak at 10 min. The recombinant protein that contains only the ACE2 receptor-binding domain of SARS-CoV-2 spike protein S1 subunit (Arg319 - Phe541), on the other hand, did not cause this activation. Consistent with the activation of cell growth signaling in lung vascular cells by SARS-CoV-2 spike protein, pulmonary vascular walls were found to be thickened in COVID-19 patients. Thus, SARS-CoV-2 spike protein-mediated cell growth signaling may participate in adverse cardiovascular/pulmonary outcomes, and this mechanism may provide new therapeutic targets to combat COVID-19.

16.
Antioxidants (Basel) ; 8(8)2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31434270

RESUMEN

Discovery of induced pluripotent stem cells (iPSCs) has revolutionized regeneration biology, providing further mechanistic insights and possible therapeutic applications. The original discovery by Yamanaka and co-workers showed that the expression of four transcription factors in fibroblasts resulted in the generation of iPSCs that can be differentiated into various cell types. This technology should be particularly useful for restoring cells with limited proliferative capacities such as adult heart muscle cells and neurons, in order to treat diseases affecting these cell types. More recently, iPSCs-mediated cell reprogramming has advanced to new technologies including direct reprogramming and pharmacological reprogramming. Direct reprogramming allows for the conversion of fibroblasts into cardiomyocytes, neurons or other cells by expressing multiple cell type-specific transcription factors without going through the production of iPSCs. Both iPSC-mediated reprogramming as well as direct reprogramming can also be promoted by a combination of small molecules, opening up a possibility for pharmacological therapies to induce cell reprogramming. However, all of these processes have been shown to be affected by reactive oxygen species that reduce the efficacies of reprogramming fibroblasts into iPSCs, differentiating iPSCs into target cells, as well as direct reprogramming. Accordingly, antioxidants have been shown to support these reprogramming processes and this review article summarizes these findings. It should be noted however, that the actions of antioxidants to support cell reprogramming may be through their ROS inhibiting abilities, but could also be due to mechanisms that are independent of classical antioxidant actions.

17.
J Am Heart Assoc ; 8(5): e011227, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30807241

RESUMEN

Background Pulmonary arterial hypertension ( PAH ) is a serious disease without cure. Elevated pulmonary vascular resistance puts strain on the right ventricle ( RV ) and patients die of RV failure. Subjecting Sprague-Dawley rats to SU 5416 injection and hypoxia promotes severe PAH with pulmonary vascular lesions similar to human disease and has been well utilized to investigate pulmonary vascular pathology. However, despite exhibiting severe RV fibrosis, these rats do not die. Recently, subjecting Fischer ( CDF ) rats to the same treatment to promote PAH was found to result in mortality. Thus, the present study performed detailed morphological characterizations of Fischer rats with PAH . Methods and Results Rats were subjected to SU 5416 injection and hypoxia for 3 weeks, followed by maintenance in normoxia. More than 90% of animals died within 6 weeks of the SU 5416 injection. Necropsy revealed the accumulation of fluid in the chest cavity, right ventricular hypertrophy and dilatation, hepatomegaly, and other indications of congestive heart failure. Time course studies demonstrated the progressive thickening of pulmonary arteries with the formation of concentric lamellae and plexiform lesions as well as RV fibrosis in PAH rats. Transmission electron microscopy demonstrated the destruction of the myofilaments, T-tubules, and sarcoplasmic reticulum. RV mitochondrial damage and fission were found in Fischer rats, but not in Sprague-Dawley rats, with PAH . Conclusions These results suggest that the destruction of RV mitochondria plays a role in the mechanism of PAH -induced death. The SU 5416/hypoxia model in Fischer rats should be useful for further investigating the mechanism of RV failure and finding effective therapeutic agents to increase the survival of PAH patients.


Asunto(s)
Insuficiencia Cardíaca/etiología , Ventrículos Cardíacos/ultraestructura , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/ultraestructura , Hipertensión Arterial Pulmonar/complicaciones , Disfunción Ventricular Derecha/etiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Masculino , Metabolómica , Microscopía Electrónica de Transmisión , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Especificidad de la Especie , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha , Remodelación Ventricular
18.
Antioxidants (Basel) ; 8(6)2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212589

RESUMEN

The brain is sensitive to aging-related morphological changes, where many neurodegenerative diseases manifest accompanied by a reduction in memory. The hippocampus is especially vulnerable to damage at an early stage of aging. The present transmission electron microscopy study examined the synapses and synaptic mitochondria of the CA1 region of the hippocampal layer in young-adult and old rats by means of a computer-assisted image analysis technique. Comparing young-adult (10 months of age) and old (22 months) male Fischer (CDF) rats, the total numerical density of synapses was significantly lower in aged rats than in the young adults. This age-related synaptic loss involved degenerative changes in the synaptic architectonic organization, including damage to mitochondria in both pre- and post-synaptic compartments. The number of asymmetric synapses with concave curvature decreased with age, while the number of asymmetric synapses with flat and convex curvatures increased. Old rats had a greater number of damaged mitochondria in their synapses, and most of this was type II and type III mitochondrial structural damage. These results demonstrate age-dependent changes in the morphology of synaptic mitochondria that may underlie declines in age-related synaptic function and may couple to age-dependent loss of synapses.

19.
Antioxidants (Basel) ; 7(11)2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30373097

RESUMEN

Pulmonary arterial hypertension (PAH) is a fatal disease without satisfactory therapeutic options. By the time patients are diagnosed with this disease, the remodeling of pulmonary arteries has already developed due to the abnormal growth of pulmonary vascular cells. Therefore, agents that reduce excess pulmonary vascular cells have therapeutic potential. Bcl-2 is known to function in an antioxidant pathway to prevent apoptosis. The present study examined the effects of inhibitors of the anti-apoptotic proteins Bcl-2 and Bcl-xL. ABT-263 (Navitoclax), ABT-199 (Venetoclax), ABT-737, and Obatoclax, which all promoted the death of cultured human pulmonary artery smooth muscle cells. Further examinations using ABT-263 showed that Bcl-2/Bcl-xL inhibition indeed promoted apoptotic programmed cell death. ABT-263-induced cell death was inhibited by antioxidants. ABT-263 also promoted autophagy; however, the inhibition of autophagy did not suppress ABT-263-induced cell death. This is in contrast to other previously studied drugs, including anthracyclines and proteasome inhibitors, which were found to mediate autophagy to induce cell death. The administration of ABT-263 to rats with PAH in vivo resulted in the reversal of pulmonary vascular remodeling. Thus, promoting apoptosis by inhibiting anti-apoptotic Bcl-2 and Bcl-xL effectively kills pulmonary vascular smooth muscle cells and reverses pulmonary vascular remodeling.

20.
Antioxidants (Basel) ; 7(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096794

RESUMEN

Right-sided heart failure is the major cause of death among patients who suffer from various forms of pulmonary hypertension and congenital heart disease. The right ventricle (RV) and left ventricle (LV) originate from different progenitor cells and function against very different blood pressures. However, differences between the RV and LV formed after birth have not been well defined. Work from our laboratory and others has accumulated evidence that redox signaling, oxidative stress and antioxidant regulation are important components that define the RV/LV differences. The present article summarizes the progress in understanding the roles of redox biology in the RV chamber-specificity. Understanding the mechanisms of RV/LV differences should help develop selective therapeutic strategies to help patients who are susceptible to and suffering from right-sided heart failure. Modulations of redox biology may provide effective therapeutic avenues for these conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA