Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(2): e1011871, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330139

RESUMEN

Massive sequencing of SARS-CoV-2 genomes has urged novel methods that employ existing phylogenies to add new samples efficiently instead of de novo inference. 'TIPars' was developed for such challenge integrating parsimony analysis with pre-computed ancestral sequences. It took about 21 seconds to insert 100 SARS-CoV-2 genomes into a 100k-taxa reference tree using 1.4 gigabytes. Benchmarking on four datasets, TIPars achieved the highest accuracy for phylogenies of moderately similar sequences. For highly similar and divergent scenarios, fully parsimony-based and likelihood-based phylogenetic placement methods performed the best respectively while TIPars was the second best. TIPars accomplished efficient and accurate expansion of phylogenies of both similar and divergent sequences, which would have broad biological applications beyond SARS-CoV-2. TIPars is accessible from https://tipars.hku.hk/ and source codes are available at https://github.com/id-bioinfo/TIPars.


Asunto(s)
Genoma , Programas Informáticos , Filogenia , Funciones de Verosimilitud , SARS-CoV-2/genética
2.
J Virol ; 97(12): e0136923, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38038429

RESUMEN

IMPORTANCE: Viral host adaptation plays an important role in inter-species transmission of coronaviruses and influenza viruses. Multiple human-adaptive mutations have been identified in influenza viruses but not so far in MERS-CoV that circulates widely in dromedary camels in the Arabian Peninsula leading to zoonotic transmission. Here, we analyzed clade B MERS-CoV sequences and identified an amino acid substitution L232F in nsp6 that repeatedly occurs in human MERS-CoV. Using a loss-of-function reverse genetics approach, we found the nsp6 L232F conferred increased viral replication competence in vitro, in cultures of the upper human respiratory tract ex vivo, and in lungs of mice infected in vivo. Our results showed that nsp6 L232F may be an adaptive mutation associated with zoonotic transmission of MERS-CoV. This study highlighted the capacity of MERS-CoV to adapt to transmission to humans and also the need for continued surveillance of MERS-CoV in camels.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Proteínas no Estructurales Virales , Animales , Humanos , Ratones , Sustitución de Aminoácidos , Camelus , Infecciones por Coronavirus/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Mutación , Proteínas no Estructurales Virales/genética
3.
Emerg Infect Dis ; 28(2): 467-470, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35076003

RESUMEN

We report surveillance conducted in 217 pestiferous rodents in Hong Kong for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We did not detect SARS-CoV-2 RNA but identified 1 seropositive rodent, suggesting exposure to a virus antigenically similar to SARS-CoV-2. Potential exposure of urban rodents to SARS-CoV-2 cannot be ruled out.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Hong Kong/epidemiología , Humanos , ARN Viral/genética , Roedores
4.
Virus Evol ; 10(1): veae056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247558

RESUMEN

The unprecedentedly large size of the global SARS-CoV-2 phylogeny makes any computation on the tree difficult. Lineage identification (e.g. the PANGO nomenclature for SARS-CoV-2) and assignment are key to track the virus evolution. It requires annotating clade roots of lineages to unlabeled ancestral nodes in a phylogenetic tree. Then the lineage labels of descendant samples under these clade roots can be inferred to be the corresponding lineages. This is the ancestral lineage annotation problem, and matUtils (a package in pUShER) and PastML are commonly used methods. However, their computational tractability is a challenge and their accuracy needs further exploration in huge SARS-CoV-2 phylogenies. We have developed an efficient and accurate method, called "F1ALA", that utilizes the F1-score to evaluate the confidence with which a specific ancestral node can be annotated as the clade root of a lineage, given the lineage labels of a set of taxa in a rooted tree. Compared to these methods, F1ALA achieved roughly an order of magnitude faster yet with ∼12% of their memory usage when annotating 2277 PANGO lineages in a phylogeny of 5.26 million taxa. F1ALA allows real-time lineage tracking to be performed on a laptop computer. F1ALA outperformed matUtils (pUShER) with statistical significance, and had comparable accuracy to PastML in tests on empirical and simulated data. F1ALA enables a tree refinement by pruning taxa with inconsistent labels to their closest annotation nodes and re-inserting them back to the pruned tree to improve a SARS-CoV-2 phylogeny with both higher log-likelihood and lower parsimony score. Given the ultrafast speed and high accuracy, we anticipated that F1ALA will also be useful for large phylogenies of other viruses. Codes and benchmark datasets are publicly available at https://github.com/id-bioinfo/F1ALA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA