Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 168(5): 910-954, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183680

RESUMEN

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Asunto(s)
Encéfalo , Metabolismo Energético , Animales , Humanos , Encéfalo/metabolismo
2.
Neurobiol Dis ; 191: 106407, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199272

RESUMEN

Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.


Asunto(s)
Depresión de Propagación Cortical , Hipocampo , Ratones , Animales , Hipocampo/metabolismo , Proteínas de Transporte de Membrana , Quelantes , Neuroglía/metabolismo , Zinc/metabolismo
3.
Neurocrit Care ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192101

RESUMEN

BACKGROUND: Impairment in cerebral autoregulation has been proposed as a potentially targetable factor in patients with aneurysmal subarachnoid hemorrhage (aSAH); however, there are different continuous measures that can be used to calculate the state of autoregulation. In addition, it has previously been proposed that there may be an association of impaired autoregulation with the occurrence of spreading depolarization (SD) events. METHODS: Study participants with invasive multimodal monitoring and aSAH were enrolled in an observational study. Autoregulation indices were prospectively calculated from this database as a 10 s moving correlation coefficient between various cerebral blood flow (CBF) surrogates and mean arterial pressure (MAP). In study participants with subdural electrocorticography (ECoG) monitoring, SD was also scored. Associations between clinical outcomes using the modified Rankin scale and occurrence of either isolated or clustered SD were assessed. RESULTS: A total of 320 study participants were included, 47 of whom also had ECoG SD monitoring. As expected, baseline severity factors, such as modified Fisher scale score and World Federation of Neurosurgical Societies scale grade, were strongly associated with the clinical outcome. SD probability was related to blood pressure in a triphasic pattern, with a linear increase in probability below MAP of ~ 100 mm Hg. Multiple autoregulation indices were available for review based on moving correlations between mean arterial pressure (MAP) and various surrogates of cerebral blood flow (CBF). We calculated the pressure reactivity (PRx) using two different sources for intracranial pressure (ICP). We calculated the oxygen reactivity (ORx) using the partial pressure of brain tissue oxygen (PbtO2) from the Licox probe. We calculated the cerebral blood flow reactivity (CBFRx) using perfusion measurements from the Bowman perfusion probe. Finally, we calculated the cerebral oxygen saturation reactivity (OSRx) using regional cerebral oxygen saturation measured by near-infrared spectroscopy from the INVOS sensors. Only worse ORx and OSRx were associated with worse clinical outcomes. Both ORx and OSRx also were found to increase in the hour prior to SD for both sporadic and clustered SD. CONCLUSIONS: Impairment in autoregulation in aSAH is associated with worse clinical outcomes and occurrence of SD when using ORx and OSRx. Impaired autoregulation precedes SD occurrence. Targeting the optimal MAP or cerebral perfusion pressure in patients with aSAH should use ORx and/or OSRx as the input function rather than intracranial pressure.

4.
J Neurosci ; 42(11): 2371-2383, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-34857650

RESUMEN

Spreading depolarizations (SDs) of gray matter occur in the brain in different pathologic conditions, and cause varying degrees of tissue damage depending on the extent of metabolic burden on the tissue. As might be expected for such large depolarizations, neurons exhibit bursts of action potentials (APs) as the wave propagates. However, the specific role of APs in SD propagation is unclear. This is potentially consequential, since sodium channel modulation has not been considered as a therapeutic target for SD-associated disorders, because of ambiguous experimental evidence. Using whole-cell electrophysiology and single-photon imaging in acute cortical slices from male C57Bl6 mice, we tested the effects of AP blockade on SDs generated by two widely used induction paradigms. We found that AP blockade using tetrodotoxin (TTX) restricted propagation of focally induced SDs, and significantly reduced the amplitude of neuronal depolarization, as well as its Ca2+ load. TTX also abolished the suppression of spontaneous synaptic activity that is a hallmark of focally induced SD. In contrast, TTX did not affect the propagation of SD induced by global superfusion of high [K+]e containing artificial CSF (ACSF). Thus, we show that voltage-gated sodium channel (Nav)-mediated neuronal AP bursts are critical for the propagation and downstream effects of focally induced SD but are less important when the ionic balance of the extracellular space is already compromised. In doing so we corroborate the notion that two different SD induction paradigms, each relevant to different clinical situations, vary significantly in their characteristics and potentially their response to treatment.SIGNIFICANCE STATEMENT Our findings suggest that voltage-gated sodium channel (Nav) channels have a critical role in the propagation and downstream neural effects of focally induced spreading depolarization (SD). As SDs are likely induced focally in many disease conditions, these studies support sodium channel modulation, a previously underappreciated therapeutic option in SD-associated disorders, as a viable approach.


Asunto(s)
Canales de Sodio Activados por Voltaje , Potenciales de Acción/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Tetrodotoxina/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
5.
J Neurochem ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596720

RESUMEN

Spreading depolarization (SD) has emerged as an important contributor to the enlargement of acute brain injuries. We previously showed that the N-methyl-D-aspartate receptor antagonist ketamine was able to prevent deleterious consequences of SD in brain slices, under conditions of metabolic compromise. The current study aimed to extend these observations into an in vivo stroke model, to test whether gradients of metabolic capacity lead to differential accumulation of calcium (Ca2+ ) following SD. In addition, we tested whether ketamine protects vulnerable tissuewhile allowing SD to propagate through surrounding undamaged tissue. Focal lesions were generated using a distal middle cerebral artery occlusion in mice, and clusters of SD were generated at 20 min intervals with remote microinjection of potassium chloride. SDs invading peri-infarct regions had significantly different consequences, depending on the distance from the infarct core. Proximal to the lesion, Ca2+ transients were extended, as compared with responses in better-perfused tissue more remote from the lesion. Extracellular potential shifts were also longer and hyperemia responses were reduced in proximal regions following SDs. Consistent with in vitro studies, ketamine, at concentrations that did not abolish the propagation of SD, reduced the accumulation of intracellular Ca2+ in proximal regions following an SD wave. These findings suggest that deleterious consequences of SD can be targeted in vivo, without requiring outright block of SD initiation and propagation.

6.
Stroke ; 53(6): 1975-1983, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35196873

RESUMEN

BACKGROUND: Delayed cerebral ischemia remains one of the principal therapeutic targets after aneurysmal subarachnoid hemorrhage. While large vessel vasospasm may contribute to ischemia, increasing evidence suggests that physiological impairment through disrupted impaired cerebral autoregulation (CA) and spreading depolarizations (SDs) also contribute to delayed cerebral ischemia and poor neurological outcome. This study seeks to explore the intermeasure correlation of different measures of CA, as well as correlation with SD and neurological outcome. METHODS: Simultaneous measurement of 7 continuous indices of CA was calculated in 19 subjects entered in a prospective study of SD in aneurysmal subarachnoid hemorrhage undergoing surgical aneurysm clipping. Intermeasure agreement was assessed, and the association of each index with modified Rankin Scale score at 90 days and occurrence of SD was assessed. RESULTS: There were 4102 hours of total monitoring time across the 19 subjects. In time-resolved assessment, no CA measures demonstrated significant correlation; however, most demonstrate significant correlation averaged over 1 hour. Pressure reactivity (PRx), oxygen reactivity, and oxygen saturation reactivity were significantly correlated with modified Rankin Scale score at 90 days. PRx and oxygen reactivity also were correlated with the occurrence of SD events. Across multiple CA measure reactivity indices, a threshold between 0.3 and 0.5 was most associated with intervals containing SD. CONCLUSIONS: Different continuous CA indices do not correlate well with each other on a highly time-resolved basis, so should not be viewed as interchangeable. PRx and oxygen reactivity are the most reliable indices in identifying risk of worse outcome in patients with aneurysmal subarachnoid hemorrhage undergoing surgical treatment. SD occurrence is correlated with impaired CA across multiple CA measurement techniques and may represent the pathological mechanism of delayed cerebral ischemia in patients with impaired CA. Optimization of CA in patients with aneurysmal subarachnoid hemorrhage may lead to decreased incidence of SD and improved neurological outcomes. Future studies are needed to evaluate these hypotheses and approaches.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Isquemia Encefálica/epidemiología , Infarto Cerebral/epidemiología , Homeostasis/fisiología , Humanos , Oxígeno , Estudios Prospectivos , Hemorragia Subaracnoidea/etiología , Vasoespasmo Intracraneal/tratamiento farmacológico
7.
Neurocrit Care ; 37(Suppl 1): 83-101, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35257321

RESUMEN

BACKGROUND: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.


Asunto(s)
Lesiones Encefálicas , Depresión de Propagación Cortical , Accidente Cerebrovascular , Lesiones Encefálicas/terapia , Consenso , Depresión de Propagación Cortical/fisiología , Ácido Glutámico , Humanos
8.
Brain Inj ; 35(3): 299-303, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33529080

RESUMEN

Background and Objective: Electrocorticographic (ECoG) measurement of spreading depolarization (SD) has led to significant advances in understanding of injury progression in neuro ICU patients.  However, SD can be difficult to recognize in ECoG regions with high artifact. Heuristics for ECoG analysis within these regions would be highly valuable.Methods: Patients requiring craniotomy following subarachnoid hemorrhage, malignant hemispheric stroke, or traumatic brain injury were enrolled in this study. ECoG leads were placed intraoperatively and scoring of SDs was completed twice; once using traditional criteria and again with the intention of finding SD patterns. Utilizing covariance structures, graphical overlay and various measures surrounding DC shift, SDs were evaluated for patterns.Results: SD patterns were consistently observed and were unique to each patient and lead placement. No more than five different patterns were noted for any given patient, and statistical analysis utilizing covariance structures revealed high intra-pattern consistency.Conclusion: This validation of internal patient specific patterns offers more insight into ECoG readings of high artifact regions. This, in addition to traditional SD scoring heuristics, offers another scoring tool for the neuro-ICU care of patient experiencing SD. Furthermore, description of neurologic disease by its SD patterns may offer a new direction for precision medicine.


Asunto(s)
Lesiones Encefálicas , Depresión de Propagación Cortical , Accidente Cerebrovascular , Hemorragia Subaracnoidea , Electrocorticografía , Humanos
9.
Neurocrit Care ; 35(Suppl 2): 135-145, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34657268

RESUMEN

BACKGROUND: Spreading depolarization (SD) has been identified as a key mediator of secondary lesion progression after acute brain injuries, and clinical studies are beginning to pharmacologically target SDs. Although initial work has focused on the N-Methyl-D-aspartate receptor antagonist ketamine, there is also interest in alternatives that may be better tolerated. We recently showed that ketamine can inhibit mechanisms linked to deleterious consequences of SD in brain slices. The present study tested the hypothesis that memantine improves recovery of brain slices after SD and explored the effects of memantine in a clinical case targeting SD. METHODS: For mechanistic studies, electrophysiological and optical recordings were made from hippocampal area CA1 in acutely prepared brain slices from mice. SDs were initiated by localized microinjection of K+ in conditions of either normal or reduced metabolic substrate availability. Memantine effects were assessed from intrinsic optical signals and extracellular potential recordings. For the clinical report, a subdural strip electrode was used for continuous electrocorticographic recording after the surgical evacuation of a chronic subdural hematoma. RESULTS: In brain slice studies, memantine (10-300 µM) did not prevent the initiation of SD, but impaired SD propagation rate and recovery from SD. Memantine reduced direct current (DC) shift duration and improved recovery of synaptic potentials after SD. In brain slices with reduced metabolic substrate availability, memantine reduced the evidence of structural disruption after the passage of SD. In our clinical case, memantine did not noticeably immediately suppress SD; however, it was associated with a significant reduction of SD duration and a reduction in the electrocorticographic (ECoG) suppression that occurs after SD. SD was completely suppressed, with improvement in neurological examination with the addition of a brief course of ketamine. CONCLUSIONS: These data extend recent work showing that N-Methyl-D-aspartate receptor antagonists can improve recovery from SD. These results suggest that memantine could be considered for future clinical trials targeting SD, and in some cases as an adjunct or alternative to ketamine.


Asunto(s)
Ketamina , Memantina , Animales , Encéfalo , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Memantina/farmacología , Ratones , Receptores de N-Metil-D-Aspartato
10.
Neurocrit Care ; 34(1): 345-349, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32103439

RESUMEN

BACKGROUND: Recurrent spreading depolarizations (SDs) occur in patients after aneurysmal subarachnoid hemorrhage (aSAH), resulting in metabolic stress to brain. These events are closely associated with delayed cerebral ischemia. Preclinical data suggest that the beneficial effect of nimodipine demonstrated in clinical trials may be related to inhibition of SD rather than limitation of large artery vasospasm. METHODS: Subjects enrolled in a phase 3 trial of intraventricularly delivered, sustained-release nimodipine (EG-1962) versus standard of care oral nimodipine (NEWTON 2) who required surgical clipping had subdural strip electrodes implanted for monitoring of SD. SD was then scored blinded to NEWTON 2 allocation. RESULTS: Five subjects underwent electrocorticography monitoring of SD. Three of five patients had SD. There were fewer SDs, a lower rate of SD, and shorter depression durations in subjects treated with EG-1962 compared to standard of care. Outcomes were worse in the standard of care group, though there were baseline imbalances. CONCLUSIONS: These results are consistent with a beneficial effect of locally delivered nimodipine (EG-1962) on SD after aSAH in more severely injured patients who are at risk of delayed cerebral ischemia related to SD. Larger studies are warranted to test this effect.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Encéfalo , Isquemia Encefálica/tratamiento farmacológico , Electrocorticografía , Humanos , Nimodipina , Hemorragia Subaracnoidea/tratamiento farmacológico , Vasoespasmo Intracraneal/tratamiento farmacológico , Vasoespasmo Intracraneal/etiología
11.
Neurocrit Care ; 35(Suppl 2): 105-111, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34617253

RESUMEN

BACKGROUND: Chronic subdural hematoma (cSDH) is a common neurosurgical condition responsible for excess morbidity, particularly in the geriatric population. Recovery after evacuation is complicated by fluctuating neurological deficits in a high proportion of patients. We previously demonstrated that spreading depolarizations (SDs) may be responsible for some of these events. In this study, we aim to determine candidate risk factors for probable SD and assess the influence of probable SD on outcome. METHODS: We used two cohorts who underwent surgery for cSDH. The first cohort (n = 40) had electrocorticographic monitoring to detect SD. In the second cohort (n = 345), we retrospectively identified subjects with suspected SD based on the presence of transient neurological symptoms not explained by structural etiology or ictal activity on electroencephalography. We extracted standard demographic and outcome variables for comparisons and modeling. RESULTS: Of 345 subjects, 80 (23%) were identified in the retrospective cohort as having probable SD. Potential risk factors included history of hypertension, worse clinical presentation on the Glasgow Coma Scale, and lower Hounsfield unit density and volume of the preoperative subdural hematoma. Probable SD was associated with multiple worse-outcome measures, including length of stay and clinical outcomes, but not increased mortality. On a multivariable analysis, probable SD was independently associated with worse outcome, determined by the Glasgow Outcome Scale score at the first clinic follow-up (odds ratio 1.793, 95% confidence interval 1.022-3.146) and longer hospital length of stay (odds ratio 7.952, 95% confidence interval 4.062-15.563). CONCLUSIONS: Unexplained neurological deficits after surgery for cSDH occur in nearly a quarter of patients and may be explained by SD. We identified several potential candidate risk factors. Patients with probable SD have worse outcomes, independent of other baseline risk factors. Further data with gold standard monitoring are needed to evaluate for possible predictors of SD to target therapies to a high-risk population.


Asunto(s)
Hematoma Subdural Crónico , Anciano , Escala de Coma de Glasgow , Hematoma Subdural Crónico/cirugía , Humanos , Estudios Retrospectivos , Factores de Riesgo , Resultado del Tratamiento
12.
Neurocrit Care ; 32(1): 306-310, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31338747

RESUMEN

The International Conference on Spreading Depolarizations (iCSD) held in Boca Raton, Florida, in the September of 2018 devoted a section to address the question, "What should a clinician do when spreading depolarizations are observed in a patient?" Discussants represented a wide range of expertise, including neurologists, neurointensivists, neuroradiologists, neurosurgeons, and pre-clinical neuroscientists, to provide both clinical and basic pathophysiology perspectives. A draft summary of viewpoints offered was then written by a multidisciplinary writing group of iCSD members, based on a transcript of the session. Feedback of all discussants was formally collated, reviewed, and incorporated into the final document which was subsequently approved by all authors.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Depresión de Propagación Cortical , Accidente Cerebrovascular/fisiopatología , Hemorragia Subaracnoidea/fisiopatología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Electrocorticografía , Electroencefalografía , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Humanos , Ketamina/uso terapéutico , Evaluación de Resultado en la Atención de Salud , Medicina de Precisión , Accidente Cerebrovascular/tratamiento farmacológico , Hemorragia Subaracnoidea/tratamiento farmacológico
13.
Neurocrit Care ; 32(1): 317-322, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31388871

RESUMEN

Spreading depolarizations (SDs) are profound disruptions of cellular homeostasis that slowly propagate through gray matter and present an extraordinary metabolic challenge to brain tissue. Recent work has shown that SDs occur commonly in human patients in the neurointensive care setting and have established a compelling case for their importance in the pathophysiology of acute brain injury. The International Conference on Spreading Depolarizations (iCSD) held in Boca Raton, Florida, in September of 2018 included a discussion session focused on the question of "Which SDs are deleterious to brain tissue?" iCSD is attended by investigators studying various animal species including invertebrates, in vivo and in vitro preparations, diseases of acute brain injury and migraine, computational modeling, and clinical brain injury, among other topics. The discussion included general agreement on many key issues, but also revealed divergent views on some topics that are relevant to the design of clinical interventions targeting SDs. A draft summary of viewpoints offered was then written by a multidisciplinary writing group of iCSD members, based on a transcript of the session. Feedback of all discussants was then formally collated, reviewed and incorporated into the final document. It is hoped that this report will stimulate collection of data that are needed to develop a more nuanced understanding of SD in different pathophysiological states, as the field continues to move toward effective clinical interventions.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Encéfalo/fisiopatología , Depresión de Propagación Cortical/fisiología , Animales , Electroencefalografía , Humanos , Migraña con Aura/fisiopatología
14.
J Biol Chem ; 291(2): 813-25, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26574547

RESUMEN

Excessive release of Zn(2+) in the brain is implicated in the progression of acute brain injuries. Although several signaling cascades have been reported to be involved in Zn(2+)-induced neurotoxicity, a potential contribution of tyrosine phosphatases in this process has not been well explored. Here we show that exposure to high concentrations of Zn(2+) led to a progressive increase in phosphorylation of the striatal-enriched phosphatase (STEP), a component of the excitotoxic-signaling pathway that plays a role in neuroprotection. Zn(2+)-mediated phosphorylation of STEP61 at multiple sites (hyperphosphorylation) was induced by the up-regulation of brain-derived neurotropic factor (BDNF), tropomyosin receptor kinase (Trk) signaling, and activation of cAMP-dependent PKA (protein kinase A). Mutational studies further show that differential phosphorylation of STEP61 at the PKA sites, Ser-160 and Ser-221 regulates the affinity of STEP61 toward its substrates. Consistent with these findings we also show that BDNF/Trk/PKA mediated signaling is required for Zn(2+)-induced phosphorylation of extracellular regulated kinase 2 (ERK2), a substrate of STEP that is involved in Zn(2+)-dependent neurotoxicity. The strong correlation between the temporal profile of STEP61 hyperphosphorylation and ERK2 phosphorylation indicates that loss of function of STEP61 through phosphorylation is necessary for maintaining sustained ERK2 phosphorylation. This interpretation is further supported by the findings that deletion of the STEP gene led to a rapid and sustained increase in ERK2 phosphorylation within minutes of exposure to Zn(2+). The study provides further insight into the mechanisms of regulation of STEP61 and also offers a molecular basis for the Zn(2+)-induced sustained activation of ERK2.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Zinc/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Células HeLa , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Ratas Sprague-Dawley
16.
Glia ; 64(1): 5-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26301517

RESUMEN

Spreading depolarizations (SDs) are coordinated waves of synchronous depolarization, involving large numbers of neurons and astrocytes as they spread slowly through brain tissue. The recent identification of SDs as likely contributors to pathophysiology in human subjects has led to a significant increase in interest in SD mechanisms, and possible approaches to limit the numbers of SDs or their deleterious consequences in injured brain. Astrocytes regulate many events associated with SD. SD initiation and propagation is dependent on extracellular accumulation of K(+) and glutamate, both of which involve astrocytic clearance. SDs are extremely metabolically demanding events, and signaling through astrocyte networks is likely central to the dramatic increase in regional blood flow that accompanies SD in otherwise healthy tissues. Astrocytes may provide metabolic support to neurons following SD, and may provide a source of adenosine that inhibits neuronal activity following SD. It is also possible that astrocytes contribute to the pathophysiology of SD, as a consequence of excessive glutamate release, facilitation of NMDA receptor activation, brain edema due to astrocyte swelling, or disrupted coupling to appropriate vascular responses after SD. Direct or indirect evidence has accumulated implicating astrocytes in many of these responses, but much remains unknown about their specific contributions, especially in the context of injury. Conversion of astrocytes to a reactive phenotype is a prominent feature of injured brain, and recent work suggests that the different functional properties of reactive astrocytes could be targeted to limit SDs in pathophysiological conditions.


Asunto(s)
Astrocitos/fisiología , Depresión de Propagación Cortical/fisiología , Animales , Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/terapia , Humanos
17.
Glia ; 63(1): 91-103, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25092804

RESUMEN

Waves of spreading depolarization (SD) have been implicated in the progressive expansion of acute brain injuries. SD can persist over several days, coincident with the time course of astrocyte activation, but little is known about how astrocyte activation may influence SD susceptibility. We examined whether activation of astrocytes modified SD threshold in hippocampal slices. Injection of a lentiviral vector encoding Ciliary neurotrophic factor (CNTF) into the hippocampus in vivo, led to sustained astrocyte activation, verified by up-regulation of glial fibrillary acidic protein (GFAP) at the mRNA and protein levels, as compared to controls injected with vector encoding LacZ. In acute brain slices from LacZ controls, localized 1M KCl microinjections invariably generated SD in CA1 hippocampus, but SD was never induced with this stimulus in CNTF tissues. No significant change in intrinsic excitability was observed in CA1 neurons, but excitatory synaptic transmission was significantly reduced in CNTF samples. mRNA levels of the predominantly astrocytic Na(+) /K(+) -ATPase pump α2 subunit were higher in CNTF samples, and the kinetics of extracellular K(+) transients during matched synaptic activation were consistent with increased K(+) uptake in CNTF tissues. Supporting a role for the Na(+) /K(+) -ATPase pump in increased SD threshold, ouabain, an inhibitor of the pump, was able to generate SD in CNTF tissues. These data support the hypothesis that activated astrocytes can limit SD onset via increased K(+) clearance and suggest that therapeutic strategies targeting these glial cells could improve the outcome following acute brain injuries associated with SD.


Asunto(s)
Astrocitos/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Neuronas/metabolismo , Potasio/metabolismo , Animales , Lesiones Encefálicas/metabolismo , Polaridad Celular/fisiología , Factor Neurotrófico Ciliar/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Regulación hacia Arriba/efectos de los fármacos
18.
J Neurosci Res ; 92(10): 1384-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24840241

RESUMEN

Spreading depression (SD), a self-propagating wave of astroglial and neuronal depolarization, is an accompaniment of several neurological disorders including epilepsy. Its well-described features are initial depolarization, followed by EEG flattening. In this in vivo study in awake animals, the relationship of SDs to epileptiform activity was re-examined. We assessed SDs generated by mechanical stimulation and by metabolic inhibition with fluorocitrate. In addition to identifying prolonged EEG depression, we identified two periods, one prior to and another during depression, characterized by increases in power of specific frequencies that were sometimes associated with epileptiform discharges. The first period was characterized by ripple activity close to the induction site (88% of SDs with intracortical electrodes). The second period was characterized by localized low-frequency spikes (100% with dural screw electrodes, 65% with intracortical electrodes). By using fluorocitrate to induce SDs, the initial period was also characterized by runs of spikes (52%). Finally, with SDs induced by both methods, there was a period at the end of depression when additional, unprovoked SDs occurred (20%). Five stages of SD were defined by these phenomena, in the order: excitation, depression, excitation, depression, SD, with metabolic inhibition enhancing the expression of epileptiform spiking.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiología , Depresión de Propagación Cortical/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Animales , Electroencefalografía , Lateralidad Funcional , Miembro Posterior/inervación , Masculino , Espectrometría de Masas , Estimulación Física , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
19.
Neuroscience ; 551: 323-332, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38821241

RESUMEN

Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.


Asunto(s)
Potenciales Postsinápticos Excitadores , Ratones Endogámicos C57BL , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Potenciación a Largo Plazo/fisiología , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Adenosina/metabolismo , Adenosina/farmacología , Ratones , Depresión de Propagación Cortical/fisiología , Depresión de Propagación Cortical/efectos de los fármacos , Cloruro de Potasio/farmacología , Hipocampo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores AMPA/metabolismo
20.
medRxiv ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38798620

RESUMEN

Background: Impairment in cerebral autoregulation has been proposed as a potentially targetable factor in patients with aneurysmal subarachnoid hemorrhage (aSAH), however there are different continuous measures that can be used to calculate the state of autoregulation. In addition, it has previously been proposed that there may be an association of impaired autoregulation with the occurrence of spreading depolarization (SD) events. Methods: Subjects with invasive multimodal monitoring and aSAH were enrolled in an observational study. Autoregulation indices were prospectively calculated from this database as a 10 second moving correlation coefficient between various cerebral blood flow (CBF) surrogates and mean arterial pressure (MAP). In subjects with subdural ECoG (electrocorticography) monitoring, SD was also scored. Associations between clinical outcomes using the mRS (modified Rankin Scale) and occurrence of either isolated or clustered SD was assessed. Results: 320 subjects were included, 47 of whom also had ECoG SD monitoring. As expected, baseline severity factors such as mFS and WFNS (World Federation of Neurosurgical Societies scale) were strongly associated with the clinical outcome. SD probability was related to blood pressure in a triphasic pattern with a linear increase in probability below MAP of ∼100mmHg.Autoregulation indices were available for intracranial pressure (ICP) measurements (PRx), PbtO2 from Licox (ORx), perfusion from the Bowman perfusion probe (CBFRx), and cerebral oxygen saturation measured by near infrared spectroscopy (OSRx). Only worse ORx and OSRx were associated with worse clinical outcomes. ORx and OSRx also were found to both increase in the hour prior to SD for both sporadic and clustered SD. Conclusions: Impairment in autoregulation in aSAH is associated with worse clinical outcomes and occurrence of SD when using ORx and OSRx. Impaired autoregulation precedes SD occurrence. Targeting the optimal MAP or cerebral perfusion pressure in patients with aSAH should use ORx and/or OSRx as the input function rather than intracranial pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA