Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(20): 3350-3360, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33030203

RESUMEN

Proteus syndrome is a progressive overgrowth disorder with vascular malformations caused by mosaic expression of the AKT1 c.49G > A, p.(E17K) activating variant which was predicted to cause lethality if expressed ubiquitously. To test that hypothesis, we used the ACTB-Cre gene to activate a conditional Akt1 p.(E17K) allele in the mouse. No offspring that was heterozygous for both Cre and the conditional allele (ßA-Akt1WT/flx) was viable. Fewer than expected numbers of ßA-Akt1WT/flx embryos were seen beginning at E11.5, but a few survived until E17.5. The phenotype ranged from mild to severe, but generally ßA-Akt1WT/flx embryos had fewer visible blood vessels and more hemorrhages than their wild-type littermates, which was suggestive of a vascular abnormality. Examination of E13.5 limb skin showed a primitive capillary network with increased branching complexity and abnormal patterning compared with wild-type skin. By E15.5, wild-type skin had undergone angiogenesis and formed a hierarchical network of remodeled vessels, whereas in ßA-Akt1WT/flx embryos, the capillary network failed to remodel. Mural cell coverage of the blood vessels was also reduced in ßA-Akt1WT/flx skin compared with that of wild type. Restricting expression of Akt1E17K to endothelial, cardiac or smooth muscle cells resulted in viable offspring and remodeled vasculature and did not recapitulate the ßA-Akt1WT/flx phenotype. We conclude that ubiquitous expression of Akt1E17K suppresses remodeling and inhibits the formation of a normal skin vasculature. We postulate that this failure prevents proper circulation necessary to support the growing embryo and that it is the result of interactions of multiple cell types with increased AKT signaling.


Asunto(s)
Pérdida del Embrión/patología , Embrión de Mamíferos/patología , Neovascularización Patológica/patología , Enfermedades Vasculares Periféricas/patología , Síndrome de Proteo/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Pérdida del Embrión/etiología , Pérdida del Embrión/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Ratones , Ratones Transgénicos , Neovascularización Patológica/etiología , Neovascularización Patológica/metabolismo , Enfermedades Vasculares Periféricas/etiología , Enfermedades Vasculares Periféricas/metabolismo , Síndrome de Proteo/etiología , Síndrome de Proteo/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal
2.
Hum Mol Genet ; 28(17): 2920-2936, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31194862

RESUMEN

Proteus syndrome is a mosaic, progressive overgrowth disorder caused by a somatic activating variant c.49G > A p.(E17K) in AKT1. The presentation in affected individuals is variable, with a diversity of tissues demonstrating abnormalities. Common manifestations include skin and bony overgrowth, vascular malformations (VMs), cysts and benign tumors. We used two methods to create mouse models that had endogenously-regulated mosaic expression of the Proteus syndrome variant. Variant allele fractions (VAFs) ranged from 0% to 50% across numerous tissues in 44 Proteus syndrome mice. Mice were phenotypically heterogeneous with lesions rarely observed before 12 months of age. VMs were the most frequent finding with a total of 69 found in 29 of 44 Proteus syndrome mice. Twenty-eight cysts and ectasia, frequently biliary, were seen in 22 of 44 Proteus syndrome mice. Varying levels of mammary hyperplasia were seen in 10 of 16 female Proteus syndrome mice with other localized regions of hyperplasia and stromal expansion noted in several additional animals. Interestingly, 27 of 31 Proteus syndrome animals had non-zero blood VAF that is in contrast to the human disorder where it is rarely seen in peripheral blood. Identification of variant-positive cells by green fluorescent protein (GFP) staining in chimeric Proteus syndrome mice showed that in some lesions, hyperplastic cells were predominantly GFP/Akt1E17K-positive and showed increased pAKT signal compared to GFP-negative cells. However, hyperplastic mammary epithelium was a mixture of GFP/Akt1E17K-positive and negative cells with some GFP/Akt1E17K-negative cells also having increased pAKT signal suggesting that the variant-positive cells can induce lesion formation in a non-cell autonomous manner.


Asunto(s)
Modelos Animales de Enfermedad , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Síndrome de Proteo/genética , Alelos , Animales , Biopsia , Estudios de Asociación Genética/métodos , Sitios Genéticos , Genotipo , Humanos , Ratones , Síndrome de Proteo/diagnóstico , Proteínas Proto-Oncogénicas c-akt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA