RESUMEN
BACKGROUND: Swamp-type buffaloes with varying degrees of white spotting are found exclusively in Tana Toraja, South Sulawesi, Indonesia, where spotted buffalo bulls are highly valued in accordance with the Torajan customs. The white spotting depigmentation is caused by the absence of melanocytes. However, the genetic variants that cause this phenotype have not been fully characterized. The objective of this study was to identify the genomic regions and variants responsible for this unique coat-color pattern. RESULTS: Genome-wide association study (GWAS) and selection signature analysis identified MITF as a key gene based on the whole-genome sequencing data of 28 solid and 39 spotted buffaloes, while KIT was also found to be involved in the development of this phenotype by a candidate gene approach. Alternative candidate mutations included, in addition to the previously reported nonsense mutation c.649 C > T (p.Arg217*) and splice donor mutation c.1179 + 2T > A in MITF, a nonsense mutation c.2028T > A (p.Tyr676*) in KIT. All these three mutations were located in the genomic regions that were highly conserved exclusively in Indonesian swamp buffaloes and they accounted largely (95%) for the manifestation of white spotting. Last but not the least, ADAMTS20 and TWIST2 may also contribute to the diversification of this coat-color pattern. CONCLUSIONS: The alternative mutations identified in this study affect, at least partially and independently, the development of melanocytes. The presence and persistence of such mutations may be explained by significant financial and social value of spotted buffaloes used in historical Rambu Solo ceremony in Tana Toraja, Indonesia. Several de novo spontaneous mutations have therefore been favored by traditional breeding for the spotted buffaloes.
Asunto(s)
Búfalos , Estudio de Asociación del Genoma Completo , Factor de Transcripción Asociado a Microftalmía , Proteínas Proto-Oncogénicas c-kit , Animales , Búfalos/genética , Factor de Transcripción Asociado a Microftalmía/genética , Proteínas Proto-Oncogénicas c-kit/genética , Genómica/métodos , Mutación , Fenotipo , Indonesia , Polimorfismo de Nucleótido Simple , Pigmentación/genética , Secuenciación Completa del GenomaRESUMEN
Accurate breed classification is required for the conservation and utilization of farm animal genetic resources. Traditional classification methods mainly rely on phenotypic characterization. However, it is difficult to distinguish between the highly similar breeds due to the challenges in qualifying the phenotypic character. Machine learning algorithms show unique advantages in breed classification using genomic information. To evaluate the classification methods for Chinese cattle breeds, this study utilized genomic SNP data from 213 individuals across seven Chinese local breeds and compared the classification accuracies of three feature selection methods (FST value sorting and screening, mRMR, and Relief-F) and three machine learning algorithms (Random Forest, Support Vector Machine, and Naive Bayes). Results showed that: 1) using the FST method to screen more than 1500 SNPs, or using the mRMR algorithm to screen more than 1000 SNPs, the SVM classification algorithm can achieve more than 99.47% classification accuracy; 2) the most effective algorithm was SVM, followed by NB, while the best SNP selection method was FST and mRMR, followed by Relief-F; 3) species misclassification often occurs between breeds with high similarity. This study demonstrates that machine learning classification models combined with genomic data are effective methods for the classification of local cattle breeds, providing a technical basis for the rapid and accurate classification of cattle breeds in China.
Asunto(s)
Algoritmos , Aprendizaje Automático , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , China , Cruzamiento , Genómica/métodos , Máquina de Vectores de Soporte , Marcadores Genéticos/genética , Genoma/genéticaRESUMEN
Visible pigmentation phenotypes can be used to explore the regulation of gene expression and the evolution of coat color patterns in animals. Here, we performed whole-genome and RNA sequencing and applied genome-wide association study, comparative population genomics and biological experiments to show that the 2,809-bp-long LINE-1 insertion in the ASIP (agouti signaling protein) gene is the causative mutation for the white coat phenotype in swamp buffalo (Bubalus bubalis). This LINE-1 insertion (3' truncated and containing only 5' UTR) functions as a strong proximal promoter that leads to a 10-fold increase in the transcription of ASIP in white buffalo skin. The 165 bp of 5' UTR transcribed from the LINE-1 is spliced into the first coding exon of ASIP, resulting in a chimeric transcript. The increased expression of ASIP prevents melanocyte maturation, leading to the absence of pigment in white buffalo skin and hairs. Phylogenetic analyses indicate that the white buffalo-specific ASIP allele originated from a recent genetic transposition event in swamp buffalo. Interestingly, as a similar LINE-1 insertion has been identified in the cattle ASIP gene, we discuss the convergent mechanism of coat color evolution in the Bovini tribe.
Asunto(s)
Proteína de Señalización Agouti/genética , Evolución Biológica , Búfalos/genética , Elementos de Nucleótido Esparcido Largo , Pigmentación/genética , Proteína de Señalización Agouti/metabolismo , Animales , Búfalos/metabolismo , Bovinos , Elementos Transponibles de ADN , Femenino , Masculino , Melanocitos/fisiología , Fenotipo , Regiones Promotoras Genéticas , Piel/metabolismo , Secuenciación Completa del GenomaRESUMEN
Genetic introgression not only provides material for adaptive evolution but also confounds our understanding of evolutionary history. This is particularly true for canids, a species complex in which genome sequencing and analysis has revealed a complex history of admixture and introgression. Here, we sequence 19 new whole genomes from high-altitude Tibetan and Himalayan wolves and dogs and combine these into a larger data set of 166 whole canid genomes. Using these data, we explore the evolutionary history and adaptation of these and other canid lineages. We find that Tibetan and Himalayan wolves are closely related to each other, and that â¼39% of their nuclear genome is derived from an as-yet-unrecognized wolf-like lineage that is deeply diverged from living Holarctic wolves and dogs. The EPAS1 haplotype, which is present at high frequencies in Tibetan dog breeds and wolves and confers an adaptive advantage to animals living at high altitudes, was probably derived from this ancient lineage. Our study underscores the complexity of canid evolution and demonstrates how admixture and introgression can shape the evolutionary trajectories of species.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Evolución Biológica , Perros/genética , Hibridación Genética , Lobos/genética , Animales , Secuenciación Completa del GenomaRESUMEN
BACKGROUND: Ketosis is a common metabolic disease during the transition period in dairy cattle, resulting in long-term economic loss to the dairy industry worldwide. While genetic selection of resistance to ketosis has been adopted by many countries, the genetic and biological basis underlying ketosis is poorly understood. RESULTS: We collected a total of 24 blood samples from 12 Holstein cows, including 4 healthy and 8 ketosis-diagnosed ones, before (2 weeks) and after (5 days) calving, respectively. We then generated RNA-Sequencing (RNA-Seq) data and seven blood biochemical indicators (bio-indicators) from leukocytes and plasma in each of these samples, respectively. By employing a weighted gene co-expression network analysis (WGCNA), we detected that 4 out of 16 gene-modules, which were significantly engaged in lipid metabolism and immune responses, were transcriptionally (FDR < 0.05) correlated with postpartum ketosis and several bio-indicators (e.g., high-density lipoprotein and low-density lipoprotein). By conducting genome-wide association signal (GWAS) enrichment analysis among six common health traits (ketosis, mastitis, displaced abomasum, metritis, hypocalcemia and livability), we found that 4 out of 16 modules were genetically (FDR < 0.05) associated with ketosis, among which three were correlated with postpartum ketosis based on WGCNA. We further identified five candidate genes for ketosis, including GRINA, MAF1, MAFA, C14H8orf82 and RECQL4. Our phenome-wide association analysis (Phe-WAS) demonstrated that human orthologues of these candidate genes were also significantly associated with many metabolic, endocrine, and immune traits in humans. For instance, MAFA, which is involved in insulin secretion, glucose response, and transcriptional regulation, showed a significantly higher association with metabolic and endocrine traits compared to other types of traits in humans. CONCLUSIONS: In summary, our study provides novel insights into the molecular mechanism underlying ketosis in cattle, and highlights that an integrative analysis of omics data and cross-species mapping are promising for illustrating the genetic architecture underpinning complex traits.
Asunto(s)
Enfermedades de los Bovinos/genética , Cetosis/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Cetosis/genética , Cetosis/metabolismo , Leucocitos/metabolismo , RNA-SeqRESUMEN
Household buffalo dairy farming is gaining popularity nowadays in Bangladesh because of the outstanding food value of buffalo milk as well as the lower production cost of buffalo compared to cattle. An initiative has recently been taken for the genetic improvement of indigenous dairy buffaloes. The present study was carried out to determine the influence of some environmental factors like age, parity, season of calving, calving interval, dry period on the lactation yield, and lactation curve of indigenous dairy buffaloes of Bangladesh. A total of 384 indigenous dairy buffaloes from the 3rd and 4th parity of seven herds under two different agroecological zones covering four seasons were selected and ear tagged for individual buffalo milk recording. A milk yield of 300 days (MY300d) was calculated following the International Committee for Animal Recording (ICAR) and the data were evaluated using the generalized linear model (GLM). In production traits, the mean of calculated lactation period (CLP), calculated lactation yield (CLY), and milk yield of 300 days (MY300d) of the overall population were 267.28 days, 749.36 kg, and 766.92 kg, respectively, whereas calving interval (CI) and dry period (DP) as reproductive traits were 453.06 days and 185.78 days, respectively. The season of calving, age of buffalo cows, population or herd, agroecological zone, calving interval, and dry period had significant effects on production traits (p < 0.05 to p < 0.001). The season of calving, level of milk production of 300 days, population, and agroecological zone significantly affected the reproduction traits (p < 0.01 to p < 0.001). Parity was found to be non-significant for both types of traits. The average peak yield of test day (TD) milk production was highest at TD4 (4.47 kg, 98th day of lactation). The average MY300d of milk production was the highest in the Lalpur buffalo population (1076.13 kg) and the lowest in the buffalo population of Bhola (592.44 kg). The correlations between milk production traits (CLP, CLY, and MY-300d) and reproduction traits (CI and DP) were highly significant (p < 0.01 to p < 0.001). Positive and high correlation was found within milk traits and reproduction traits, but correlation was negative between milk traits and reproduction traits. Therefore, these non-genetic factors should be considered in the future for any genetic improvement program for indigenous dairy buffaloes in Bangladesh.
RESUMEN
We generated 73 transcriptomic data of water buffalo, which were integrated with publicly available data in this species, yielding a large dataset of 355 samples representing 20 major tissue categories. We established a multi-tissue gene expression atlas of water buffalo. Furthermore, by comparing them with 4866 cattle transcriptomic data from the cattle genotype-tissue expression atlas (CattleGTEx), we found that the transcriptomes of the two species exhibited conservation in their overall gene expression patterns, tissue-specific gene expression and house-keeping gene expression. We further identified conserved and divergent expression genes between the two species, with the largest number of differentially expressed genes found in the skin, which may be related to structural and functional differences in the skin of the two species. This work provides a source of functional annotation of the buffalo genome and lays the foundations for future genetic and evolutionary studies in water buffalo.
Asunto(s)
Búfalos , Transcriptoma , Animales , Bovinos/genética , Transcriptoma/genética , Búfalos/genética , Genoma , Perfilación de la Expresión GénicaRESUMEN
Mastitis caused by Staphylococcus aureus (S. aureus) infection is one of the most difficult diseases to treat in dairy cattle. Exploring the biological progression of S. aureus mastitis via the interaction between host, pathogen, and environment is the key to an effective and sustainable improvement of animal health. Here, two strains of S. aureus and a strain of MRSA (Methicillin-resistant Staphylococcus aureus) isolated from cows with different inflammation phenotypes were used to challenge Mac-T cells and to investigate their effects on the global transcriptome of the cells, then to explore the potential regulatory mechanisms of folic acid on S. aureus mastitis prevention. Differential gene expression or splicing analysis showed that different strains of S. aureus led to distinct transcriptional responses from the host immune system. Folic acid could protect host defense against the challenge of S. aureus and MRSA partially through activating cytoplasmic DNA sensing and tight junction pathway. ZBP1 at the upstream of cytoplasmic DNA sensing pathway was verified and related to anti-pathogen through RNA interference. Further enrichment analysis using these transcriptome data with cattle large-scale genome-wide association study (GWAS) data confirmed that ZBP1 gene is highly associated with bovine somatic cell score (SCS) trait. Our data shed light on the potential effect of FA through regulating key gene and then protect host cells' defense against S. aureus and MRSA.
RESUMEN
The application of high-throughput genotyping or sequencing data helps us to understand the genomic response to natural and artificial selection. In this study, we scanned the genomes of five indigenous buffalo populations belong to three recognized breeds, adapted to different geographical and agro-ecological zones in Iran, to unravel the extent of genomic diversity and to localize genomic regions and genes underwent past selection. A total of 46 river buffalo whole genomes, from West and East Azerbaijan, Gilan, Mazandaran, and Khuzestan provinces, were resequenced. Our sequencing data reached to a coverage above 99% of the river buffalo reference genome and an average read depth around 9.2× per sample. We identified 20.55 million SNPs, including 63,097 missense, 707 stop-gain, and 159 stop-loss mutations that might have functional consequences. Genomic diversity analyses showed modest structuring among Iranian buffalo populations following frequent gene flow or admixture in the recent past. Evidence of positive selection was investigated using both differentiation (Fst) and fixation (Pi) metrics. Analysis of fixation revealed three genomic regions in all three breeds with aberrant polymorphism contents on BBU2, 20, and 21. Fixation signal on BBU2 overlapped with the OCA2-HERC2 genes, suggestive of adaptation to UV exposure through pigmentation mechanism. Further validation using resequencing data from other five bovine species as well as the Axiom Buffalo Genotyping Array 90K data of river and swamp buffaloes indicated that these fixation signals persisted across river and swamp buffaloes and extended to taurine cattle, implying an ancient evolutionary event occurred before the speciation of buffalo and taurine cattle. These results contributed to our understanding of major genetic switches that took place during the evolution of modern buffaloes.
Asunto(s)
Adaptación Biológica , Búfalos/genética , Genoma , Animales , Bovinos , Biología Computacional , Femenino , Variación Genética , Genómica , Irán , Masculino , Polimorfismo de Nucleótido SimpleRESUMEN
OBJECTIVE: Prenatal stress (PS) contributes to depression-like behavior in the offspring. PDLIM5 is involved in the onset of mental disorders. This study is to investigate the role and mechanism of PDLIM5 in depression-like behavior of PS offspring rats. METHODS: PS model was used to analyze the effects of different treatments to PS offspring rats with different sex, including PDLIM5, PDLIM5 shRNA and 5-aza-2' -deoxycytidine (5-azaD). The depression-like behavior was assessed by the sucrose preference test (SPT) and forced swimming test (FST). The mRNA and protein expression levels of PDLIM5 in the hippocampus of PS offspring rats were detected by qRT-PCR and western blot, respectively. The methylation of PDLIM5 promoter were analyzed by bisulfite sequencing. RESULTS: Our data revealed that PS offspring rats showed a significant decrease in sucrose preference and a prolonged immobility time. Injection of PDLIM5 significantly improved the depression-like behavior in PS offspring rats, whereas administration of PDLIM5 shRNA aggravated it. In addition, PDLIM5 expression was decreased at the mRNA and protein levels, and the methylation level of PDLIM5 promoter was increased in hippocampus of PS male but not female offspring rats. Furthermore, microinjection of 5-azaD improved the PS induced depression-like behavior in offspring rats. Moreover, in male PS offspring rats, microinjection of 5-azaD reversed the effect of PS on PDLIM5 expression and promoter methylation. CONCLUSION: PDLIM5 can significantly improve the depression-like behavior of both male and female PS offspring rats, while the PDLIM5 promoter methylation is only observed in male PS offspring rats. Our study may provide new mechanism for the pathogenesis of depression and experimental evidence for sex-based precise treatment.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Proteínas con Dominio LIM/farmacología , Complicaciones del Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Caracteres Sexuales , Estrés Psicológico , Proteínas Adaptadoras Transductoras de Señales/administración & dosificación , Animales , Metilación de ADN/genética , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Femenino , Proteínas con Dominio LIM/administración & dosificación , Masculino , Embarazo , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Proteínas RecombinantesRESUMEN
Paper mulberry (Broussonetia papyrifera; PM) is an excellent and extensive type of roughage in Asia. This study aimed to evaluate the effects of PM silage on the milk production, apparent digestibility, antioxidant capacity, and fecal bacteria composition in Holstein dairy cows. Forty-five lactating Holstein dairy cows with a similar milk yield and parity were selected and randomly assigned to three groups. The control group was fed a non-PM silage diet, and the PM-treated groups were fed 4.5 and 9.0% PM silage supplementary diets for 28 days. Then, treatment groups were fed diets containing 13.5 and 18.0% PM silage for the next 28 days, respectively. PM silage increased the milk urea nitrogen and decreased the somatic cell count (p < 0.05), but did not affect the dry matter intake, milk yield, apparent digestibility, and energy balance of dairy cows. PM silage can enhance the blood total antioxidant capacity, superoxide dismutase, and immune globulin content (p < 0.05). The PM silage significantly decreased the relative abundance of the genera Ruminococcaceae UCG-013 and Tyzzerella-4 (p < 0.05). In conclusion, PM silage enhanced the antioxidant capacity and immunity of dairy cows, but did not influence the milk yield, dry matter digestibility, and fecal bacteria composition.
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.