Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(14): 2650-2665.e12, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35662397

RESUMEN

Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.


Asunto(s)
Coenzima A , Microbiota , Animales , Coenzima A/genética , Coenzima A/metabolismo , Drosophila/metabolismo , Femenino , Humanos , Madres , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Cigoto/metabolismo
2.
Nat Rev Mol Cell Biol ; 17(10): 605-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27552973

RESUMEN

The consensus has been that intracellular coenzyme A (CoA) is obtained exclusively by de novo biosynthesis via a universal, conserved five-step pathway in the cell cytosol. However, old and new evidence suggest that cells (and some microorganisms) have several strategies to obtain CoA, with 4'-phosphopantetheine (P-PantSH; the fourth intermediate in the canonical CoA biosynthetic pathway) serving as a 'nexus' metabolite.


Asunto(s)
Coenzima A/biosíntesis , Panteteína/análogos & derivados , Animales , Transporte Biológico , Vías Biosintéticas , Permeabilidad de la Membrana Celular , Humanos , Panteteína/metabolismo
3.
Development ; 147(20)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994170

RESUMEN

Programmed cell death and consecutive removal of cellular remnants is essential for development. During late stages of Drosophila melanogaster oogenesis, the small somatic follicle cells that surround the large nurse cells promote non-apoptotic nurse cell death, subsequently engulf them, and contribute to the timely removal of nurse cell corpses. Here, we identify a role for Vps13 in the timely removal of nurse cell corpses downstream of developmental programmed cell death. Vps13 is an evolutionarily conserved peripheral membrane protein associated with membrane contact sites and lipid transfer. It is expressed in late nurse cells, and persistent nurse cell remnants are observed when Vps13 is depleted from nurse cells but not from follicle cells. Microscopic analysis revealed enrichment of Vps13 in close proximity to the plasma membrane and the endoplasmic reticulum in nurse cells undergoing degradation. Ultrastructural analysis uncovered the presence of an underlying Vps13-dependent membranous structure in close association with the plasma membrane. The newly identified structure and function suggests the presence of a Vps13-dependent process required for complete degradation of bulky remnants of dying cells.


Asunto(s)
Apoptosis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Núcleo Celular/metabolismo , Regulación hacia Abajo , Drosophila melanogaster/ultraestructura , Retículo Endoplásmico/metabolismo , Femenino , Fertilidad , Mutación/genética , Oogénesis , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Folículo Ovárico/ultraestructura , Fenotipo
4.
Mol Genet Metab ; 137(3): 283-291, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36240582

RESUMEN

Studies aimed at supporting different treatment approaches for pantothenate kinase-associated neurodegeneration (PKAN) have revealed the complexity of coenzyme A (CoA) metabolism and the limits of our current knowledge about disease pathogenesis. Here we offer a foundation for critically evaluating the myriad approaches, argue for the importance of unbiased disease models, and highlight some of the outstanding questions that are central to our understanding and treating PKAN.


Asunto(s)
Neurodegeneración Asociada a Pantotenato Quinasa , Humanos , Coenzima A/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
5.
Am J Hum Genet ; 102(6): 1018-1030, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29754768

RESUMEN

Coenzyme A (CoA) is an essential metabolic cofactor used by around 4% of cellular enzymes. Its role is to carry and transfer acetyl and acyl groups to other molecules. Cells can synthesize CoA de novo from vitamin B5 (pantothenate) through five consecutive enzymatic steps. Phosphopantothenoylcysteine synthetase (PPCS) catalyzes the second step of the pathway during which phosphopantothenate reacts with ATP and cysteine to form phosphopantothenoylcysteine. Inborn errors of CoA biosynthesis have been implicated in neurodegeneration with brain iron accumulation (NBIA), a group of rare neurological disorders characterized by accumulation of iron in the basal ganglia and progressive neurodegeneration. Exome sequencing in five individuals from two unrelated families presenting with dilated cardiomyopathy revealed biallelic mutations in PPCS, linking CoA synthesis with a cardiac phenotype. Studies in yeast and fruit flies confirmed the pathogenicity of identified mutations. Biochemical analysis revealed a decrease in CoA levels in fibroblasts of all affected individuals. CoA biosynthesis can occur with pantethine as a source independent from PPCS, suggesting pantethine as targeted treatment for the affected individuals still alive.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Cardiomiopatía Dilatada/genética , Genes Recesivos , Mutación/genética , Péptido Sintasas/genética , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Cardiomiopatía Dilatada/diagnóstico , Carnitina/análogos & derivados , Carnitina/metabolismo , Preescolar , Coenzima A/biosíntesis , Demografía , Drosophila , Estabilidad de Enzimas , Femenino , Fibroblastos/metabolismo , Corazón/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Panteteína/administración & dosificación , Panteteína/análogos & derivados , Linaje , Péptido Sintasas/sangre , Péptido Sintasas/química , Péptido Sintasas/deficiencia , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
6.
Neurobiol Dis ; 124: 108-117, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30408590

RESUMEN

Several neurodegenerative diseases like Huntington's, a polyglutamine (PolyQ) disease, are initiated by protein aggregation in neurons. Furthermore, these diseases are also associated with a multitude of responses in non-neuronal cells in the brain, in particular glial cells, like astrocytes. These non-neuronal responses have repeatedly been suggested to play a disease-modulating role, but how these may be exploited to delay the progression of neurodegeneration has remained unclear. Interestingly, one of the molecular changes that astrocytes undergo includes the upregulation of certain Heat Shock Proteins (HSPs) that are classically considered to maintain protein homeostasis, thus resulting in cell autonomous protection. Previously, we discovered DNAJB6, a member of the human DNAJ family, as potent cell autonomous suppressor of PolyQ aggregation and related neurodegeneration. Using cell type specific expression systems in D. melanogaster, we show that exclusive expression of DNAJB6 in astrocytes (that do not express PolyQ protein) can delay neurodegeneration and expands lifespan when the PolyQ protein is exclusively expressed in neurons (that do not co-express DNAJB6 themselves). This provides direct evidence for a non-cell autonomous protective role of astrocytes in PolyQ diseases.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Enfermedad de Huntington/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Proteínas del Choque Térmico HSP40/genética , Proteína Huntingtina/metabolismo , Masculino , Chaperonas Moleculares/genética , Proteínas del Tejido Nervioso/genética , Péptidos/metabolismo
7.
J Exp Biol ; 221(Pt 10)2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29650755

RESUMEN

Temperature influences the physiology and behavior of all organisms. For ectotherms, which lack central temperature regulation, temperature adaptation requires sheltering from or moving to a heat source. As temperature constrains the rate of metabolic reactions, it can directly affect ectotherm physiology and thus behavioral performance. This direct effect is particularly relevant for insects, as their small bodies readily equilibrate with ambient temperature. In fact, models of enzyme kinetics applied to insect behavior predict performance at different temperatures suggesting that thermal physiology governs behavior. However, insects also possess thermosensory neurons critical for locating preferred temperatures, showing cognitive control. This suggests that temperature-related behavior can emerge directly from a physiological effect, indirectly as a consequence of thermosensory processing, or through a combination of both. To separate the roles of thermal physiology and cognitive control, we developed an arena that allows fast temperature changes in time and space, and in which animals' movements are automatically quantified. We exposed wild-type Drosophila melanogaster and thermosensory receptor mutants to a dynamic temperature environment and tracked their movements. The locomotor speed of wild-type flies closely matched models of enzyme kinetics, but the behavior of thermosensory mutants did not. Mutations in thermosensory receptor gene dTrpA1 (Transient Receptor Potential A1) expressed in the brain resulted in a complete lack of response to temperature changes, while mutations in peripheral thermosensory receptor gene Gr28b(D) resulted in a diminished response. We conclude that flies react to temperature through cognitive control, informed by interactions between various thermosensory neurons, the behavioral output of which resembles models of enzyme kinetics.


Asunto(s)
Drosophila melanogaster/fisiología , Locomoción , Receptores de Superficie Celular/fisiología , Temperatura , Animales , Encéfalo/metabolismo , Cognición/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Canales Iónicos/genética , Masculino , Mutación , Receptores de Superficie Celular/genética
8.
Nucleic Acids Res ; 44(1): 152-63, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26384414

RESUMEN

Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation.


Asunto(s)
G-Cuádruplex , Guanina , Heterocromatina/química , Heterocromatina/genética , Animales , Cilióforos , Drosophila , Células Germinativas/metabolismo , Histonas/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/ultraestructura , Platelmintos , Cromosomas Politénicos/química , Cromosomas Politénicos/genética , Ratas
9.
Nat Chem Biol ; 11(10): 784-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322826

RESUMEN

The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA. Here CoA was hydrolyzed extracellularly by ectonucleotide pyrophosphatases to 4'-phosphopantetheine, a biologically stable molecule able to translocate through membranes via passive diffusion. Inside the cell, 4'-phosphopantetheine was enzymatically converted back to CoA by the bifunctional enzyme CoA synthase. Phenotypes induced by intracellular CoA deprivation were reversed when exogenous CoA was provided. Our findings answer long-standing questions in fundamental cell biology and have major implications for the understanding of CoA-related diseases and therapies.


Asunto(s)
Caenorhabditis elegans/metabolismo , Coenzima A/biosíntesis , Drosophila/metabolismo , Panteteína/análogos & derivados , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Línea Celular , Coenzima A/sangre , Coenzima A/farmacología , Coenzima A Ligasas/metabolismo , Drosophila/citología , Drosophila/crecimiento & desarrollo , Femenino , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones Endogámicos C57BL , Panteteína/sangre , Panteteína/metabolismo , Panteteína/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
10.
Mol Med ; 21(1): 758-768, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26467707

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies.

11.
Circulation ; 129(3): 346-58, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24146251

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is characterized by structural remodeling, contractile dysfunction, and AF progression. Histone deacetylases (HDACs) influence acetylation of both histones and cytosolic proteins, thereby mediating epigenetic regulation and influencing cell proteostasis. Because the exact function of HDACs in AF is unknown, we investigated their role in experimental and clinical AF models. METHODS AND RESULTS: Tachypacing of HL-1 atrial cardiomyocytes and Drosophila pupae hearts significantly impaired contractile function (amplitude of Ca(2+) transients and heart wall contractions). This dysfunction was prevented by inhibition of HDAC6 (tubacin) and sirtuins (nicotinamide). Tachypacing induced specific activation of HDAC6, resulting in α-tubulin deacetylation, depolymerization, and degradation by calpain. Tachypacing-induced contractile dysfunction was completely rescued by dominant-negative HDAC6 mutants with loss of deacetylase activity in the second catalytic domain, which bears α-tubulin deacetylase activity. Furthermore, in vivo treatment with the HDAC6 inhibitor tubastatin A protected atrial tachypaced dogs from electric remodeling (action potential duration shortening, L-type Ca(2+) current reduction, AF promotion) and cellular Ca(2+)-handling/contractile dysfunction (loss of Ca(2+) transient amplitude, sarcomere contractility). Finally, atrial tissue from patients with AF also showed a significant increase in HDAC6 activity and reduction in the expression of both acetylated and total α-tubulin. CONCLUSIONS: AF induces remodeling and loss of contractile function, at least in part through HDAC6 activation and subsequent derailment of α-tubulin proteostasis and disruption of the cardiomyocyte microtubule structure. In vivo inhibition of HDAC6 protects against AF-related atrial remodeling, disclosing the potential of HDAC6 as a therapeutic target in clinical AF.


Asunto(s)
Fibrilación Atrial/metabolismo , Proteínas de Drosophila/metabolismo , Histona Desacetilasas/metabolismo , Miocitos Cardíacos/enzimología , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Fibrilación Atrial/fisiopatología , Remodelación Atrial/fisiología , Calpaína/metabolismo , Estimulación Cardíaca Artificial , Perros , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Células HeLa , Histona Desacetilasa 6 , Humanos , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Ratones , Microtúbulos/metabolismo , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología
12.
Biochem Soc Trans ; 42(4): 1075-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25110005

RESUMEN

In all organisms biomolecules play a vital role to enable proper cellular metabolism. Alteration of metabolite homoeostasis disrupts the physiology of cells, leading to various diseases [DeBerardinis and Thompson (2012) Cell, 148, 1132-1144]. Recent studies advances our understanding that some metabolites are not only involved in cellular metabolism, but also have other molecular functions. It has become evident that similar to multifunctional 'moonlighting proteins', 'moonlighting metabolites' also exists. One clear example is nicotinamide adenine dinucleotide (NAD). NAD is a ubiquitous molecule with a well-known function in many metabolic reactions, but it also has become clear that NAD is involved in the regulation of sirtuins. Sirtuins play a role in cancer, diabetes, and cardiovascular, neurodegenerative and other diseases [Donmez and Outeiro (2013) EMBO Mol. Med. 5, 344-352] and the deacetylation capacity of sirtuin proteins is NAD-dependent. This direct role of NAD in age-related diseases could not be anticipated when NAD was initially discovered as a metabolic cofactor [Donmez and Outeiro (2013) EMBO Mol. Med. 5, 344-352; Mouchiroud et al. (2013) Crit. Rev. Biochem. Mol. Biol. 48, 397-408]. Recent findings now also indicate that CoA (coenzyme A), another metabolic cofactor, can be considered as being more than 'just' a metabolic cofactor, and altered CoA levels lead to severe and complex effects.


Asunto(s)
Coenzima A/metabolismo , Animales , Humanos , NAD/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
13.
Biochem Soc Trans ; 42(4): 1025-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25109997

RESUMEN

In 1945, Fritz Lipmann discovered a heat-stable cofactor required for many enzyme-catalysed acetylation reactions. He later determined the structure for this acetylation coenzyme, or coenzyme A (CoA), an achievement for which he was awarded the Nobel Prize in 1953. CoA is now firmly embedded in the literature, and in students' minds, as an acyl carrier in metabolic reactions. However, recent research has revealed diverse and important roles for CoA above and beyond intermediary metabolism. As well as participating in direct post-translational regulation of metabolic pathways by protein acetylation, CoA modulates the epigenome via acetylation of histones. The organization of CoA biosynthetic enzymes into multiprotein complexes with different partners also points to close linkages between the CoA pool and multiple signalling pathways. Dysregulation of CoA biosynthesis or CoA thioester homoeostasis is associated with various human pathologies and, although the biochemistry of CoA biosynthesis is highly conserved, there are significant sequence and structural differences between microbial and human biosynthetic enzymes. Therefore the CoA biosynthetic pathway is an attractive target for drug discovery. The purpose of the Coenzyme A and Its Derivatives in Cellular Metabolism and Disease Biochemical Society Focused Meeting was to bring together researchers from around the world to discuss the most recent advances on the influence of CoA, its biosynthetic enzymes and its thioesters in cellular metabolism and diseases and to discuss challenges and opportunities for the future.


Asunto(s)
Coenzima A/metabolismo , Acetilación , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Ácido Pantoténico/metabolismo
15.
Epilepsy Res ; 203: 107380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781737

RESUMEN

OBJECTIVE: North Sea Progressive Myoclonus Epilepsy (NS-PME) is a rare genetic disorder characterized by ataxia, myoclonus and seizures with a progressive course. Although the cause of NS-PME is known, namely a homozygous mutation in the GOSR2 gene (c.430 G>T; p. Gly144Trp), sufficient treatment is lacking. Despite combinations of on average 3-5 anti-seizure medications (ASMs), debilitating myoclonus and seizures persist. Here we aimed to gain insight into the most effective anti-convulsive target in NS-PME by evaluating the individual effects of ASMs in a NS-PME Drosophila model. METHOD: A previously generated Drosophila model for NS-PME was used displaying progressive heat-sensitive seizures. We used this model to test 1. a first-generation ASM (sodium barbital), 2. common ASMs used in NS-PME (clonazepam, valproic acid, levetiracetam, ethosuximide) and 3. a novel third-generation ASM (ganaxolone) with similar mode of action to sodium barbital. Compounds were administered by adding them to the food in a range of concentrations. After 7 days of treatment, the percentage of heat-induced seizures was determined and compared to non-treated but affected controls. RESULTS: As previously reported in the NS-PME Drosophila model, sodium barbital resulted in significant seizure suppression, with increasing effect at higher dosages. Of the commonly prescribed ASMs, clonazepam and ethosuximide resulted in significant seizure suppression, whereas both valproic acid and levetiracetam did not show any changes in seizures. Interestingly, ganaxolone did result in seizure suppression as well. CONCLUSION: Of the six drugs tested, three of the four that resulted in seizure suppression (sodium barbital, clonazepam, ganaxolone) are primary known for their direct effect on GABAA receptors. This suggests that GABAA could be a potentially important target in the treatment of NS-PME. Consequently, these findings add rationale to the exploration of the clinical effect of ganaxolone in NS-PME and other progressive myoclonus epilepsies.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Drosophila , Epilepsias Mioclónicas Progresivas , Animales , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacología , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/tratamiento farmacológico , Animales Modificados Genéticamente , Receptores de GABA-A/genética , Receptores de GABA-A/efectos de los fármacos
16.
Proc Natl Acad Sci U S A ; 107(15): 6988-93, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20351285

RESUMEN

Pantothenate kinase-associated neurodegeneration (PKAN), a progressive neurodegenerative disorder, is associated with impairment of pantothenate kinase function. Pantothenate kinase is the first enzyme required for de novo synthesis of CoA, an essential metabolic cofactor. The pathophysiology of PKAN is not understood, and there is no cure to halt or reverse the symptoms of this devastating disease. Recently, we and others presented a PKAN Drosophila model, and we demonstrated that impaired function of pantothenate kinase induces a neurodegenerative phenotype and a reduced lifespan. We have explored this Drosophila model further and have demonstrated that impairment of pantothenate kinase is associated with decreased levels of CoA, mitochondrial dysfunction, and increased protein oxidation. Furthermore, we searched for compounds that can rescue pertinent phenotypes of the Drosophila PKAN model and identified pantethine. Pantethine feeding restores CoA levels, improves mitochondrial function, rescues brain degeneration, enhances locomotor abilities, and increases lifespan. We show evidence for the presence of a de novo CoA biosynthesis pathway in which pantethine is used as a precursor compound. Importantly, this pathway is effective in the presence of disrupted pantothenate kinase function. Our data suggest that pantethine may serve as a starting point to develop a possible treatment for PKAN.


Asunto(s)
Drosophila/metabolismo , Regulación de la Expresión Génica , Panteteína/análogos & derivados , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Animales , Encéfalo/patología , Coenzima A/química , Drosophila/genética , Humanos , Mitocondrias/metabolismo , Modelos Biológicos , Mutación , Estrés Oxidativo , Oxígeno/química , Panteteína/farmacología , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
17.
Neurobiol Dis ; 46(3): 607-24, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22426390

RESUMEN

The terms "neuroacanthocytosis" (NA) and "neurodegeneration with brain iron accumulation" (NBIA) both refer to groups of genetically heterogeneous disorders, classified together due to similarities of their phenotypic or pathological findings. Even collectively, the disorders that comprise these sets are exceedingly rare and challenging to study. The NBIA disorders are defined by their appearance on brain magnetic resonance imaging, with iron deposition in the basal ganglia. Clinical features vary, but most include a movement disorder. New causative genes are being rapidly identified; however, the mechanisms by which mutations cause iron accumulation and neurodegeneration are not well understood. NA syndromes are also characterized by a progressive movement disorder, accompanied by cognitive and psychiatric features, resulting from mutations in a number of genes whose roles are also basically unknown. An overlapping feature of the two groups, NBIA and NA, is the occurrence of acanthocytes, spiky red cells with a poorly-understood membrane dysfunction. In this review we summarise recent developments in this field, specifically insights into cellular mechanisms and from animal models. Cell membrane research may shed light upon the significance of the erythrocyte abnormality, and upon possible connections between the two sets of disorders. Shared pathophysiologic mechanisms may lead to progress in the understanding of other types of neurodegeneration.


Asunto(s)
Encéfalo/patología , Eritrocitos/fisiología , Hierro/fisiología , Enfermedades Neurodegenerativas/patología , Animales , Autofagia/fisiología , Química Encefálica/fisiología , Humanos , Hierro/sangre , Hierro/metabolismo , Neuroacantocitosis/patología , Enfermedades Neurodegenerativas/sangre
18.
Hum Mol Genet ; 19(23): 4677-93, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20843828

RESUMEN

A small number of heat-shock proteins have previously been shown to act protectively on aggregation of several proteins containing an extended polyglutamine (polyQ) stretch, which are linked to a variety of neurodegenerative diseases. A specific subfamily of heat-shock proteins is formed by the HSPB family of molecular chaperones, which comprises 10 members (HSPB1-10, also called small HSP). Several of them are known to act as anti-aggregation proteins in vitro. Whether they also act protectively in cells against polyQ aggregation has so far only been studied for few of them (e.g. HSPB1, HSPB5 and HSPB8). Here, we compared the 10 members of the human HSPB family for their ability to prevent aggregation of disease-associated proteins with an expanded polyQ stretch. HSPB7 was identified as the most active member within the HSPB family. It not only suppressed polyQ aggregation but also prevented polyQ-induced toxicity in cells and its expression reduces eye degeneration in a Drosophila polyQ model. Upon overexpression in cells, HSPB7 was not found in larger oligomeric species when expressed in cells and-unlike HSPB1-it did not improve the refolding of heat-denatured luciferase. The action of HSPB7 was also not dependent on the Hsp70 machine or on proteasomal activity, and HSPB7 overexpression alone did not increase autophagy. However, in ATG5-/- cells that are defective in macroautophagy, the anti-aggregation activity of HSPB7 was substantially reduced. Hence, HSPB7 prevents toxicity of polyQ proteins at an early stage of aggregate formation by a non-canonical mechanism that requires an active autophagy machinery.


Asunto(s)
Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Péptidos/metabolismo , Animales , Autofagia , Western Blotting , Línea Celular , Drosophila , Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Análisis de Secuencia de Proteína
19.
J Mol Cell Cardiol ; 51(3): 381-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21745477

RESUMEN

The most common clinical tachycardia, Atrial Fibrillation (AF), is a progressive disease, caused by cardiomyocyte remodeling, which finally results in contractile dysfunction and AF persistence. Recently, we identified a protective role of heat shock proteins (HSPs), especially the small HSPB1 member, against tachycardia remodeling in experimental AF models. Our understanding of tachycardia remodeling and anti-remodeling drugs is currently hampered by the lack of suitable (genetic) manipulatable in vivo models for rapid screening of key targets in remodeling. We hypothesized that Drosophila melanogaster can be exploited to study tachycardia remodeling and protective effects of HSPs by drug treatments or by utilizing genetically manipulated small HSP-overexpressing strains. Tachypacing of Drosophila pupae resulted in gradual and significant cardiomyocyte remodeling, demonstrated by reduced contraction rate, increase in arrhythmic episodes and reduction in heart wall shortening, compared to normal paced pupae. Heat shock, or pre-treatment with HSP-inducers GGA and BGP-15, resulted in endogenous HSP overexpression and protection against tachycardia remodeling. DmHSP23 overexpressing Drosophilas were protected against tachycardia remodeling, in contrast to overexpression of other small HSPs (DmHSP27, DmHSP67Bc, DmCG4461, DmCG7409, and DmCG14207). (Ultra)structural evaluation of the tachypaced heart wall revealed loss of sarcomeres and mitochondrial damage which were absent in tachypaced DmHSP23 overexpressing Drosophila. In addition, tachypacing induced a significant increase in calpain activity, which was prevented in tachypaced Drosophila overexpressing DmHSP23. Tachypacing of Drosophila resulted in cardiomyocyte remodeling, which was prevented by general HSP-inducing treatments and overexpression of a single small HSP, DmHSP23. Thus, tachypaced D. melanogaster can be used as an in vivo model system for rapid identification of novel targets to combat AF associated cardiomyocyte remodeling.


Asunto(s)
Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Contracción Miocárdica , Animales , Fibrilación Atrial/patología , Calpaína/metabolismo , Modelos Animales de Enfermedad , Diterpenos/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Expresión Génica/genética , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/fisiopatología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Contracción Miocárdica/genética , Oximas/farmacología , Piperidinas/farmacología , Taquicardia/patología , Taquicardia/fisiopatología , Taquicardia/prevención & control
20.
J Biol Chem ; 285(48): 37811-22, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20858900

RESUMEN

Protein aggregation is a hallmark of many neuronal disorders, including the polyglutamine disorder spinocerebellar ataxia 3 and peripheral neuropathies associated with the K141E and K141N mutations in the small heat shock protein HSPB8. In cells, HSPB8 cooperates with BAG3 to stimulate autophagy in an eIF2α-dependent manner and facilitates the clearance of aggregate-prone proteins (Carra, S., Seguin, S. J., Lambert, H., and Landry, J. (2008) J. Biol. Chem. 283, 1437-1444; Carra, S., Brunsting, J. F., Lambert, H., Landry, J., and Kampinga, H. H. (2009) J. Biol. Chem. 284, 5523-5532). Here, we first identified Drosophila melanogaster HSP67Bc (Dm-HSP67Bc) as the closest functional ortholog of human HSPB8 and demonstrated that, like human HSPB8, Dm-HSP67Bc induces autophagy via the eIF2α pathway. In vitro, both Dm-HSP67Bc and human HSPB8 protected against mutated ataxin-3-mediated toxicity and decreased the aggregation of a mutated form of HSPB1 (P182L-HSPB1) associated with peripheral neuropathy. Up-regulation of both Dm-HSP67Bc and human HSPB8 protected and down-regulation of endogenous Dm-HSP67Bc significantly worsened SCA3-mediated eye degeneration in flies. The K141E and K141N mutated forms of human HSPB8 that are associated with peripheral neuropathy were significantly less efficient than wild-type HSPB8 in decreasing the aggregation of both mutated ataxin 3 and P182L-HSPB1. Our current data further support the link between the HSPB8-BAG3 complex, autophagy, and folding diseases and demonstrate that impairment or loss of function of HSPB8 might accelerate the progression and/or severity of folding diseases.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Deficiencias en la Proteostasis/metabolismo , Animales , Autofagia , Modelos Animales de Enfermedad , Drosophila/genética , Proteínas de Drosophila/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Ojo/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA