Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6687-6706, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38783391

RESUMEN

The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.


Asunto(s)
Regiones no Traducidas 3' , Disparidad de Par Base , Motivos de Nucleótidos , ARN Viral , SARS-CoV-2 , Humanos , Emparejamiento Base , COVID-19/virología , Genoma Viral , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Plasmodium falciparum/genética , ARN Viral/química , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/química
2.
J Am Chem Soc ; 124(37): 11073-84, 2002 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-12224955

RESUMEN

There has recently been considerable interest in using NMR spectroscopy to identify ligand binding sites of macromolecules. In particular, a modular approach has been put forward by Fesik et al. (Shuker, S. B.; Hajduk, P. J.; Meadows, R. P.; Fesik, S. W. Science 1996, 274, 1531-1534) in which small ligands that bind to a particular target are identified in a first round of screening and subsequently linked together to form ligands of higher affinity. Similar strategies have also been proposed for in silico drug design, where the binding sites of small chemical groups are identified, and complete ligands are subsequently assembled from different groups that have favorable interactions with the macromolecular target. In this paper, we compare experimental and computational results on a selected target (FKBP12). The binding sites of three small ligands ((2S)1-acetylprolinemethylester, 1-formylpiperidine, 1-piperidinecarboxamide) in FKBP12 were identified independently by NMR and by computational methods. The subsequent comparison of the experimental and computational data showed that the computational method identified and ranked favorably ligand positions that satisfy the experimental NOE constraints.


Asunto(s)
Modelos Químicos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteína 1A de Unión a Tacrolimus/química , Sitios de Unión , Simulación por Computador , Ligandos , Modelos Moleculares , Relación Estructura-Actividad , Proteína 1A de Unión a Tacrolimus/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA