RESUMEN
Germline mutations in CDKN2A, encoding the tumor suppressor p16, are responsible for a large proportion of familial melanoma cases and also increase risk of pancreatic cancer. We identified four families through pancreatic cancer probands that were affected by both cancers. These families bore a germline missense variant of CDKN2A (47T>G), encoding a p16-L16R mutant protein associated with high cancer occurrence. Here, we investigated the biological significance of this variant. When transfected into p16-null pancreatic cancer cells, p16-L16R was expressed at lower levels than wild-type (WT) p16. In addition, p16-L16R was unable to bind CDK4 or CDK6 compared with WT p16, as shown by coimmunoprecipitation assays and also was impaired in its ability to inhibit the cell cycle, as demonstrated by flow cytometry analyses. In silico molecular modeling predicted that the L16R mutation prevents normal protein folding, consistent with the observed reduction in expression/stability and diminished function of this mutant protein. We isolated normal dermal fibroblasts from members of the families expressing WT or L16R proteins to investigate the impact of endogenous p16-L16R mutant protein on cell growth. In culture, p16-L16R fibroblasts grew at a faster rate, and most survived until later passages than p16-WT fibroblasts. Further, western blotting demonstrated that p16 protein was detected at lower levels in p16-L16R than in p16-WT fibroblasts. Together, these results suggest that the presence of a CDKN2A (47T>G) mutant allele contributes to an increased risk of pancreatic cancer as a result of reduced p16 protein levels and diminished p16 tumor suppressor function.
Asunto(s)
Ciclo Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Heterocigoto , Melanoma/patología , Neoplasias Pancreáticas/patología , Adulto , Anciano , Femenino , Humanos , Masculino , Melanoma/genética , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , LinajeRESUMEN
PURPOSE: The Mayo-Baylor RIGHT 10K Study enabled preemptive, sequence-based pharmacogenomics (PGx)-driven drug prescribing practices in routine clinical care within a large cohort. We also generated the tools and resources necessary for clinical PGx implementation and identified challenges that need to be overcome. Furthermore, we measured the frequency of both common genetic variation for which clinical guidelines already exist and rare variation that could be detected by DNA sequencing, rather than genotyping. METHODS: Targeted oligonucleotide-capture sequencing of 77 pharmacogenes was performed using DNA from 10,077 consented Mayo Clinic Biobank volunteers. The resulting predicted drug response-related phenotypes for 13 genes, including CYP2D6 and HLA, affecting 21 drug-gene pairs, were deposited preemptively in the Mayo electronic health record. RESULTS: For the 13 pharmacogenes of interest, the genomes of 79% of participants carried clinically actionable variants in 3 or more genes, and DNA sequencing identified an average of 3.3 additional conservatively predicted deleterious variants that would not have been evident using genotyping. CONCLUSION: Implementation of preemptive rather than reactive and sequence-based rather than genotype-based PGx prescribing revealed nearly universal patient applicability and required integrated institution-wide resources to fully realize individualized drug therapy and to show more efficient use of health care resources.
Asunto(s)
Citocromo P-450 CYP2D6 , Farmacogenética , Centros Médicos Académicos , Secuencia de Bases , Citocromo P-450 CYP2D6/genética , Genotipo , Humanos , Farmacogenética/métodosRESUMEN
PURPOSE: Describe CYP2C19 sequencing results in the largest series of clopidogrel-treated cases with stent thrombosis (ST), the closest clinical phenotype to clopidogrel resistance. Evaluate the impact of CYP2C19 genetic variation detected by next-generation sequencing (NGS) with comprehensive annotation and functional studies. METHODS: Seventy ST cases on clopidogrel identified from the PLATO trial (n = 58) and Mayo Clinic biorepository (n = 12) were matched 1:1 with controls for age, race, sex, diabetes mellitus, presentation, and stent type. NGS was performed to cover the entire CYP2C19 gene. Assessment of exonic variants involved measuring in vitro protein expression levels. Intronic variants were evaluated for potential splicing motif variations. RESULTS: Poor metabolizers (n = 4) and rare CYP2C19*8, CYP2C19*15, and CYP2C19*11 alleles were identified only in ST cases. CYP2C19*17 heterozygote carriers were observed more frequently in cases (n = 29) than controls (n = 18). Functional studies of CYP2C19 exonic variants (n = 11) revealed 3 cases and only 1 control carrying a deleterious variant as determined by in vitro protein expression studies. Greater intronic variation unique to ST cases (n = 169) compared with controls (n = 84) was observed with predictions revealing 13 allele candidates that may lead to a potential disruption of splicing and a loss-of-function effect of CYP2C19 in ST cases. CONCLUSION: NGS detected CYP2C19 poor metabolizers and paradoxically greater number of so-called rapid metabolizers in ST cases. Rare deleterious exonic variation occurs in 4%, and potentially disruptive intronic alleles occur in 16% of ST cases. Additional studies are required to evaluate the role of these variants in platelet aggregation and clopidogrel metabolism.
Asunto(s)
Clopidogrel/farmacocinética , Citocromo P-450 CYP2C19/genética , Resistencia a Medicamentos/genética , Inhibidores de Agregación Plaquetaria/farmacocinética , Trombosis/prevención & control , Anciano , Alelos , Clopidogrel/administración & dosificación , Exoma/genética , Femenino , Humanos , Intrones , Masculino , Persona de Mediana Edad , Inhibidores de Agregación Plaquetaria/administración & dosificación , StentsRESUMEN
BACKGROUND: The prediction of clinical behavior, response to therapy, and outcome of infiltrative glioma is challenging. On the basis of previous studies of tumor biology, we defined five glioma molecular groups with the use of three alterations: mutations in the TERT promoter, mutations in IDH, and codeletion of chromosome arms 1p and 19q (1p/19q codeletion). We tested the hypothesis that within groups based on these features, tumors would have similar clinical variables, acquired somatic alterations, and germline variants. METHODS: We scored tumors as negative or positive for each of these markers in 1087 gliomas and compared acquired alterations and patient characteristics among the five primary molecular groups. Using 11,590 controls, we assessed associations between these groups and known glioma germline variants. RESULTS: Among 615 grade II or III gliomas, 29% had all three alterations (i.e., were triple-positive), 5% had TERT and IDH mutations, 45% had only IDH mutations, 7% were triple-negative, and 10% had only TERT mutations; 5% had other combinations. Among 472 grade IV gliomas, less than 1% were triple-positive, 2% had TERT and IDH mutations, 7% had only IDH mutations, 17% were triple-negative, and 74% had only TERT mutations. The mean age at diagnosis was lowest (37 years) among patients who had gliomas with only IDH mutations and was highest (59 years) among patients who had gliomas with only TERT mutations. The molecular groups were independently associated with overall survival among patients with grade II or III gliomas but not among patients with grade IV gliomas. The molecular groups were associated with specific germline variants. CONCLUSIONS: Gliomas were classified into five principal groups on the basis of three tumor markers. The groups had different ages at onset, overall survival, and associations with germline variants, which implies that they are characterized by distinct mechanisms of pathogenesis. (Funded by the National Institutes of Health and others.).
Asunto(s)
Cromosomas Humanos Par 19 , Cromosomas Humanos Par 1 , Glioma/genética , Isocitrato Deshidrogenasa/genética , Mutación , Telomerasa/genética , Adulto , Edad de Inicio , Biomarcadores de Tumor , Análisis Mutacional de ADN , ADN de Neoplasias/análisis , Femenino , Mutación de Línea Germinal , Glioma/clasificación , Glioma/mortalidad , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Regiones Promotoras Genéticas , Modelos de Riesgos ProporcionalesRESUMEN
Chromosome instability (CIN) is widely observed in both sporadic and hereditary colorectal cancer (CRC). Defects in APC and WNT signaling are primarily associated with CIN in hereditary CRC, but the genetic causes for CIN in sporadic CRC remain elusive. Using high-density SNP array and exome data from The Cancer Genome Atlas (TCGA), we characterized loss of heterozygosity (LOH) and copy number variation (CNV) in the peripheral blood, normal colon, and corresponding tumor tissue in 15 CRC patients with proficient mismatch repair (MMR) and 24 CRC patients with deficient MMR. We found a high frequency of 18q LOH in tumors and arm-specific enrichment of genetic aberrations on 18q in the normal colon (primarily copy neutral LOH) and blood (primarily copy gain). These aberrations were specific to the sporadic, pMMR CRC. Though in tumor samples genetic aberrations were observed for genes commonly mutated in hereditary CRC (eg, APC, CTNNB1, SMAD4, BRAF), none of them showed LOH or CNV in the normal colon or blood. DCC located on 18q21.1 topped the list of genes with genetic aberrations in the tumor. In an independent cohort of 13 patients subjected to Whole Genome Sequencing (WGS), we found LOH and CNV on 18q in adenomatous polyp and tumor tissues. Our data suggests that patients with sporadic CRC may have genetic aberrations preferentially enriched on 18q in their blood, normal colon epithelium, and non-malignant polyp lesions that may prove useful as a clinical marker for sporadic CRC detection and risk assessment.
Asunto(s)
Neoplasias Colorrectales/genética , Variaciones en el Número de Copia de ADN , Reparación de la Incompatibilidad de ADN/genética , Pérdida de Heterocigocidad , Anciano , Anciano de 80 o más Años , Inestabilidad Cromosómica , Cromosomas Humanos Par 18/genética , Estudios de Cohortes , Neoplasias Colorrectales/patología , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , MutaciónRESUMEN
The "integrated diagnosis" for infiltrating gliomas in the 2016 revised World Health Organization (WHO) classification of tumors of the central nervous system requires assessment of the tumor for IDH mutations and 1p/19q codeletion. Since TERT promoter mutations and ATRX alterations have been shown to be associated with prognosis, we analyzed whether these tumor markers provide additional prognostic information within each of the five WHO 2016 categories. We used data for 1206 patients from the UCSF Adult Glioma Study, the Mayo Clinic and The Cancer Genome Atlas (TCGA) with infiltrative glioma, grades II-IV for whom tumor status for IDH, 1p/19q codeletion, ATRX, and TERT had been determined. All cases were assigned to one of 5 groups following the WHO 2016 diagnostic criteria based on their morphologic features, and IDH and 1p/19q codeletion status. These groups are: (1) Oligodendroglioma, IDH-mutant and 1p/19q-codeleted; (2) Astrocytoma, IDH-mutant; (3) Glioblastoma, IDH-mutant; (4) Glioblastoma, IDH-wildtype; and (5) Astrocytoma, IDH-wildtype. Within each group, we used univariate and multivariate Cox proportional hazards models to assess associations of overall survival with patient age at diagnosis, grade, and ATRX alteration status and/or TERT promoter mutation status. Among Group 1 IDH-mutant 1p/19q-codeleted oligodendrogliomas, the TERT-WT group had significantly worse overall survival than the TERT-MUT group (HR: 2.72, 95% CI 1.05-7.04, p = 0.04). In both Group 2, IDH-mutant astrocytomas and Group 3, IDH-mutant glioblastomas, neither TERT mutations nor ATRX alterations were significantly associated with survival. Among Group 4, IDH-wildtype glioblastomas, ATRX alterations were associated with favorable outcomes (HR: 0.36, 95% CI 0.17-0.81, p = 0.01). Among Group 5, IDH-wildtype astrocytomas, the TERT-WT group had significantly better overall survival than the TERT-MUT group (HR: 0.48, 95% CI 0.27-0.87), p = 0.02). Thus, we present evidence that in certain WHO 2016 diagnostic groups, testing for TERT promoter mutations or ATRX alterations may provide additional useful prognostic information.
Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Glioma/genética , Telomerasa/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Neoplasias del Sistema Nervioso Central/patología , Femenino , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Pronóstico , Organización Mundial de la Salud , Adulto JovenRESUMEN
To determine early somatic changes in high-grade serous ovarian cancer (HGSOC), we performed whole genome sequencing on a rare collection of 16 low stage HGSOCs. The majority showed extensive structural alterations (one had an ultramutated profile), exhibited high levels of p53 immunoreactivity, and harboured a TP53 mutation, deletion or inactivation. BRCA1 and BRCA2 mutations were observed in two tumors, with nine showing evidence of a homologous recombination (HR) defect. Combined Analysis with The Cancer Genome Atlas (TCGA) indicated that low and late stage HGSOCs have similar mutation and copy number profiles. We also found evidence that deleterious TP53 mutations are the earliest events, followed by deletions or loss of heterozygosity (LOH) of chromosomes carrying TP53, BRCA1 or BRCA2. Inactivation of HR appears to be an early event, as 62.5% of tumours showed a LOH pattern suggestive of HR defects. Three tumours with the highest ploidy had little genome-wide LOH, yet one of these had a homozygous somatic frame-shift BRCA2 mutation, suggesting that some carcinomas begin as tetraploid then descend into diploidy accompanied by genome-wide LOH. Lastly, we found evidence that structural variants (SV) cluster in HGSOC, but are absent in one ultramutated tumor, providing insights into the pathogenesis of low stage HGSOC.
Asunto(s)
Genes p53 , Mutación , Neoplasias Ováricas/genética , Reparación del ADN por Recombinación , Tetraploidía , Carcinoma/genética , ADN Primasa/genética , Femenino , Humanos , Pérdida de Heterocigocidad , Tasa de MutaciónRESUMEN
BACKGROUND: Stored biological samples with pathology information and medical records are invaluable resources for translational medical research. However, RNAs extracted from the archived clinical tissues are often substantially degraded. RNA degradation distorts the RNA-seq read coverage in a gene-specific manner, and has profound influences on whole-genome gene expression profiling. RESULT: We developed the transcript integrity number (TIN) to measure RNA degradation. When applied to 3 independent RNA-seq datasets, we demonstrated TIN is a reliable and sensitive measure of the RNA degradation at both transcript and sample level. Through comparing 10 prostate cancer clinical samples with lower RNA integrity to 10 samples with higher RNA quality, we demonstrated that calibrating gene expression counts with TIN scores could effectively neutralize RNA degradation effects by reducing false positives and recovering biologically meaningful pathways. When further evaluating the performance of TIN correction using spike-in transcripts in RNA-seq data generated from the Sequencing Quality Control consortium, we found TIN adjustment had better control of false positives and false negatives (sensitivity = 0.89, specificity = 0.91, accuracy = 0.90), as compared to gene expression analysis results without TIN correction (sensitivity = 0.98, specificity = 0.50, accuracy = 0.86). CONCLUSION: TIN is a reliable measurement of RNA integrity and a valuable approach used to neutralize in vitro RNA degradation effect and improve differential gene expression analysis.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/normas , Neoplasias de la Próstata/genética , Control de Calidad , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Análisis de Secuencia de ARN/normas , Genoma Humano , Humanos , Masculino , ARN Mensajero/química , ARN Neoplásico/químicaRESUMEN
Whole exome sequencing (WES) provides an unprecedented opportunity to identify the potential aetiological role of rare functional variants in human complex diseases. Large-scale collaborations have generated germline WES data on patients with a number of diseases, especially cancer, but less often on healthy controls under the same sequencing procedures. These data can be a valuable resource for identifying new disease susceptibility loci if study designs are appropriately applied. This review describes suggested strategies and technical considerations when focusing on case-only study designs that use WES data in complex disease scenarios. These include variant filtering based on frequency and functionality, gene prioritisation, interrogation of different data types and targeted sequencing validation. We propose that if case-only WES designs were applied in an appropriate manner, new susceptibility genes containing rare variants for human complex diseases can be detected.
Asunto(s)
Exoma/genética , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad/genética , Fenotipo , Proyectos de Investigación , Análisis de Secuencia de ADN/métodos , HumanosRESUMEN
Hepatocyte growth factor (HGF) is a mesenchyme-derived pleiotropic factor that regulates cell growth, motility, mitogenesis, and morphogenesis in a variety of cells, and increased serum levels of HGF have been linked to a number of clinical and subclinical cardiovascular disease phenotypes. However, little is currently known regarding which genetic factors influence HGF levels, despite evidence of substantial genetic contributions to HGF variation. Based upon ethnicity-stratified single-variant association analysis and trans-ethnic meta-analysis of 6201 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we discovered five statistically significant common and low-frequency variants: HGF missense polymorphism rs5745687 (p.E299K) as well as four variants (rs16844364, rs4690098, rs114303452, rs3748034) within or in proximity to HGFAC. We also identified two significant ethnicity-specific gene-level associations (A1BG in African Americans; FASN in Chinese Americans) based upon low-frequency/rare variants, while meta-analysis of gene-level results identified a significant association for HGFAC. However, identified single-variant associations explained modest proportions of the total trait variation and were not significantly associated with coronary artery calcium or coronary heart disease. Our findings indicate that genetic factors influencing circulating HGF levels may be complex and ethnically diverse.
Asunto(s)
Aterosclerosis/etnología , Aterosclerosis/genética , Factor de Crecimiento de Hepatocito/sangre , Polimorfismo de Nucleótido Simple , Serina Endopeptidasas/genética , Enfermedades Cardiovasculares/genética , Estudios de Cohortes , Factor de Crecimiento de Hepatocito/genética , Humanos , Estados UnidosRESUMEN
L-Selectin is constitutively expressed on leukocytes and mediates their interaction with endothelial cells during inflammation. Previous studies on the association of soluble L-selectin (sL-selectin) with cardiovascular disease (CVD) are inconsistent. Genetic variants associated with sL-selectin levels may be a better surrogate of levels over a lifetime. We explored the association of genetic variants and sL-selectin levels in a race/ethnicity stratified random sample of 2,403 participants in the Multi-Ethnic Study of Atherosclerosis (MESA). Through a genome-wide analysis with additive linear regression models, we found that rs12938 on the SELL gene accounted for a significant portion of the protein level variance across all four races/ethnicities. To evaluate potential additional associations, elastic net models were used for variants located in the SELL/SELP/SELE genetic region and an additional two SNPs, rs3917768 and rs4987361, were associated with sL-selectin levels in African Americans. These variants accounted for a portion of protein variance that ranged from 4 % in Hispanic to 14 % in African Americans. To investigate the relationship of these variants with CVD, 6,317 subjects were used. No significant association was found between any of the identified SNPs and carotid intima-media thickness or presence of carotid plaque using linear and logistic regression, respectively. Similarly no significant results were found for coronary artery calcium or coronary heart disease events. In conclusion, we found that variants within the SELL gene are associated with sL-selectin levels. Despite accounting for a significant portion of the protein level variance, none of the variants was associated with clinical or subclinical CVD.
Asunto(s)
Regiones no Traducidas 3'/genética , Aterosclerosis , Etnicidad/genética , Selectina L/genética , Polimorfismo de Nucleótido Simple , Anciano , Aterosclerosis/etnología , Aterosclerosis/genética , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica/genética , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Procesamiento Postranscripcional del ARN/genéticaRESUMEN
When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Exoma , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/tratamiento farmacológico , Bases de Datos Genéticas , Femenino , Frecuencia de los Genes , Genes BRCA1 , Genes BRCA2 , Genes p53 , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Invasividad Neoplásica , Estadificación de Neoplasias , Adulto JovenRESUMEN
MOTIVATION: Exome sequencing (exome-seq) data, which are typically used for calling exonic mutations, have also been utilized in detecting DNA copy number variations (CNVs). Despite the existence of several CNV detection tools, there is still a great need for a sensitive and an accurate CNV-calling algorithm with built-in QC steps, and does not require a paired reference for each sample. RESULTS: We developed a novel method named PatternCNV, which (i) accounts for the read coverage variations between exons while leveraging the consistencies of this variability across different samples; (ii) reduces alignment BAM files to WIG format and therefore greatly accelerates computation; (iii) incorporates multiple QC measures designed to identify outlier samples and batch effects; and (iv) provides a variety of visualization options including chromosome, gene and exon-level views of CNVs, along with a tabular summarization of the exon-level CNVs. Compared with other CNV-calling algorithms using data from a lymphoma exome-seq study, PatternCNV has higher sensitivity and specificity. AVAILABILITY AND IMPLEMENTATION: The software for PatternCNV is implemented using Perl and R, and can be used in Mac or Linux environments. Software and user manual are available at http://bioinformaticstools.mayo.edu/research/patterncnv/, and R package at https://github.com/topsoil/patternCNV/.
Asunto(s)
Algoritmos , Variaciones en el Número de Copia de ADN , Exoma/genética , Genómica/métodos , Análisis de Secuencia de ADN , Exones/genética , Programas InformáticosRESUMEN
Although zinc transporters were shown to play roles in the development of prostate, bladder, and renal cancer, no study has evaluated the genetic variants in zinc transporter genes with risk of urological cancers. A candidate gene association study using genome-wide association study (GWAS) datasets was conducted for variants in 24 zinc transporter genes. Genotypes were analyzed using logistic regression models adjusted for covariates. The function of identified variants was assessed by using the Encyclopedia of DNA Elements (ENCODE). We further evaluated tumors for somatic change of the implicated gene(s) and the associations between identified variants and patient survival from data in The Cancer Genome Atlas (TCGA). A ZIP11 variant, rs8081059, was significantly associated with increased risk of renal cell carcinoma (odds ratios (OR) = 1.28, 95 % confidence intervals (CI) (1.13-1.45), p = 0.049). No zinc transporter variants were associated with prostate cancer risk. Four variants within ZIP11 were significantly associated with bladder cancer risk: rs11871756 (OR = 1.43, 95 % CI (1.24-1.63), p = 0.0002), rs11077654 (OR = 0.76, 95 % CI (0.68-0.85), p = 0.001), rs9913017 (OR = 0.76, 95 % CI (0.68-0.85), p = 0.002), and rs4969054 (OR = 0.78, 95 % CI (0.69-0.88), p = 0.02); the three protective variants were co-located and highly correlated. These variants were located within predicted transcribed or enhancer regions. Among the 253 bladder cancer patients in TCGA, two had tumors that contained deleterious missense mutations in ZIP11. Moreover, rs11077654 was significantly associated with survival of bladder cancer patients (p = 0.046). In conclusion, zinc transporter gene, ZIP11, may play an important role in bladder cancer. Further studies of the gene are warranted.
Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Transicionales/genética , Proteínas de Transporte de Catión/genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/genética , Neoplasias de la Vejiga Urinaria/genética , Dedos de Zinc/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Neoplasias Renales/genética , Masculino , PronósticoRESUMEN
BACKGROUND: Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. RESULTS: For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. CONCLUSIONS: Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/.
Asunto(s)
Perfilación de la Expresión Génica , Genómica/métodos , Instituciones de Salud , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Secuencia de Bases , Exones/genética , HumanosRESUMEN
Genomewide association studies (GWAS) and candidate-gene studies have implicated single-nucleotide polymorphisms (SNPs) in at least 45 different genes as putative glioma risk factors. Attempts to validate these associations have yielded variable results and few genetic risk factors have been consistently replicated. We conducted a case-control study of Caucasian glioma cases and controls from the University of California San Francisco (810 cases, 512 controls) and the Mayo Clinic (852 cases, 789 controls) in an attempt to replicate previously reported genetic risk factors for glioma. Sixty SNPs selected from the literature (eight from GWAS and 52 from candidate-gene studies) were successfully genotyped on an Illumina custom genotyping panel. Eight SNPs in/near seven different genes (TERT, EGFR, CCDC26, CDKN2A, PHLDB1, RTEL1, TP53) were significantly associated with glioma risk in the combined dataset (P < 0.05), with all associations in the same direction as in previous reports. Several SNP associations showed considerable differences across histologic subtype. All eight successfully replicated associations were first identified by GWAS, although none of the putative risk SNPs from candidate-gene studies was associated in the full case-control sample (all P values > 0.05). Although several confirmed associations are located near genes long known to be involved in gliomagenesis (e.g., EGFR, CDKN2A, TP53), these associations were first discovered by the GWAS approach and are in noncoding regions. These results highlight that the deficiencies of the candidate-gene approach lay in selecting both appropriate genes and relevant SNPs within these genes.
Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glioma/genética , Polimorfismo de Nucleótido Simple , Anciano , California , Estudios de Casos y Controles , ADN Helicasas/genética , Receptores ErbB/genética , Femenino , Genes p16 , Genes p53 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante , Telomerasa/genética , Población Blanca/genéticaRESUMEN
Aberrant activation of GLI transcription factors has been implicated in the pathogenesis of different tumor types including pancreatic ductal adenocarcinoma. However, the mechanistic link with established drivers of this disease remains in part elusive. In this study, using a new genetically engineered mouse model overexpressing constitutively active mouse form of GLI2 and a combination of genome-wide assays, we provide evidence of a novel mechanism underlying the interplay between KRAS, a major driver of pancreatic ductal adenocarcinoma development, and GLI2 to control oncogenic gene expression. These mice, also expressing KrasG12D, show significantly reduced median survival rate and accelerated tumorigenesis compared with the KrasG12D only expressing mice. Analysis of the mechanism using RNA sequencing demonstrate higher levels of GLI2 targets, particularly tumor growth-promoting genes, including Ccnd1, N-Myc, and Bcl2, in KrasG12D mutant cells. Furthermore, chromatin immunoprecipitation sequencing studies showed that in these cells KrasG12D increases the levels of trimethylation of lysine 4 of the histone 3 (H3K4me3) at the promoter of GLI2 targets without affecting significantly the levels of other major active chromatin marks. Importantly, Gli2 knockdown reduces H3K4me3 enrichment and gene expression induced by mutant Kras. In summary, we demonstrate that Gli2 plays a significant role in pancreatic carcinogenesis by acting as a downstream effector of KrasG12D to control gene expression.
Asunto(s)
Carcinoma Ductal Pancreático , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Proteína Gli2 con Dedos de Zinc , Animales , Humanos , Ratones , Carcinogénesis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Histonas/metabolismo , Histonas/genética , Ratones Transgénicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transcripción Genética , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismoRESUMEN
We identified resistance mechanisms to abiraterone acetate/prednisone (AA/P) in patients with metastatic castration-resistant prostate cancer (mCRPC) in the Prostate Cancer Medically Optimized Genome-Enhanced Therapy (PROMOTE) study.We analyzed whole-exome sequencing (WES) and RNA-sequencing data from 83 patients with metastatic biopsies before (V1) and after 12 weeks of AA/P treatment (V2). Resistance was determined by time to treatment change (TTTC).At V2, 18 and 11 of 58 patients had either short-term (median 3.6 months; range 1.4-4.5) or long-term (median 29 months; range 23.5-41.7) responses, respectively. Nonresponders had low expression of TGFBR3 and increased activation of the Wnt pathway, cell cycle, upregulation of AR variants, both pre- and posttreatment, with further deletion of AR inhibitor CDK11B posttreatment. Deletion of androgen processing genes, HSD17B11, CYP19A1 were observed in nonresponders posttreatment. Genes involved in cell cycle, DNA repair, Wnt-signaling, and Aurora kinase pathways were differentially expressed between the responder and non-responder at V2. Activation of Wnt signaling in nonresponder and deactivation of MYC or its target genes in responders was detected via SCN loss, somatic mutations, and transcriptomics. Upregulation of genes in the AURKA pathway are consistent with the activation of MYC regulated genes in nonresponders. Several genes in the AKT1 axis had increased mutation rate in nonresponders. We also found evidence of resistance via PDCD1 overexpression in responders. IMPLICATIONS: Finally, we identified candidates drugs to reverse AA/P resistance: topoisomerase inhibitors and drugs targeting the cell cycle via the MYC/AURKA/AURKB/TOP2A and/or PI3K_AKT_MTOR pathways.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Prednisona/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Aurora Quinasa A , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Acetato de Abiraterona/efectos adversosRESUMEN
BACKGROUND: Linkage Disequilibrium (LD) bin-tagging algorithms identify a reduced set of tag SNPs that can capture the genetic variation in a population without genotyping every single SNP. However, existing tag SNP selection algorithms for designing custom genotyping panels do not take into account all platform dependent factors affecting the likelihood of a tag SNP to be successfully genotyped and many of the constraints that can be imposed by the user. RESULTS: SNPPicker optimizes the selection of tag SNPs from common bin-tagging programs to design custom genotyping panels. The application uses a multi-step search strategy in combination with a statistical model to maximize the genotyping success of the selected tag SNPs. User preference toward functional SNPs can also be taken into account as secondary criteria. SNPPicker can also optimize tag SNP selection for a panel tagging multiple populations. SNPPicker can optimize custom genotyping panels including all the assay-specific constraints of Illumina's GoldenGate and Infinium assays. CONCLUSIONS: A new application has been developed to maximize the success of custom multi-population genotyping panels. SNPPicker also takes into account user constraints including options for controlling runtime. Perl Scripts, Java source code and executables are available under an open source license for download at http://mayoresearch.mayo.edu/mayo/research/biostat/software.cfm.
Asunto(s)
Algoritmos , Polimorfismo de Nucleótido Simple , Genética de Población , Genotipo , Humanos , Desequilibrio de Ligamiento , Modelos Estadísticos , Virus/inmunologíaRESUMEN
BACKGROUND: Critically shortened telomeres contribute to chromosomal instability and neoplastic transformation and are associated with early death of patients with certain cancer types. Shorter leukocyte telomere length (LTL) has been associated with higher risk for pancreatic ductal adenocarcinoma (PDAC) and might be associated also with survival of patients with PDAC. We investigated the association between treatment-naïve LTL and overall survival of patients with incident PDAC. METHODS: The study included 642 consecutively enrolled PDAC patients in the Mayo Clinic Biospecimen Resource for Pancreas Research. Blood samples were obtained at the time of diagnosis, before the start of cancer treatment, from which LTL was assayed by qRT-PCR. LTL was first modeled as a continuous variable (per-interquartile range decrease in LTL) and then as a categorized variable (short, medium, long). Multivariable-adjusted HRs and 95% confidence intervals (CI) were calculated for overall mortality using Cox proportional hazard models. RESULTS: Shorter treatment-naïve LTL was associated with higher mortality among patients with PDAC (HRcontinuous = 1.13, 95% CI: 1.01-1.28, P = 0.03; HRshortest vs. longest LTL = 1.29, 95% CI: 1.05-1.59, P trend = 0.01). There was a difference in the association between LTL and overall mortality by tumor stage at diagnosis; resectable tumors (HRcontinuous = 0.91; 95% CI: 0.73-1.12), locally advanced tumors (HRcontinuous = 1.29; 95% CI: 1.07-1.56), and metastatic tumors (HRcontinuous = 1.17; 95% CI: 0.96-1.42), P interaction = 0.04. CONCLUSION: Shorter treatment-naïve LTL is associated with poorer overall survival of patients with incident PDAC. IMPACT: Peripheral blood LTL might be a prognostic marker for PDAC.