Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(29): e2304612120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428936

RESUMEN

Root-knot nematodes (Meloidogyne spp.) are highly evolved obligate parasites threatening global food security. These parasites have a remarkable ability to establish elaborate feeding sites in roots, which are their only source of nutrients throughout their life cycle. A wide range of nematode effectors have been implicated in modulation of host pathways for defense suppression and/or feeding site development. Plants produce a diverse array of peptide hormones including PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides, which promote root growth via cell expansion and proliferation. A sulfated PSY-like peptide RaxX (required for activation of XA21 mediated immunity X) produced by the biotrophic bacterial pathogen (Xanthomonas oryzae pv. oryzae) has been previously shown to contribute to bacterial virulence. Here, we report the identification of genes from root-knot nematodes predicted to encode PSY-like peptides (MigPSYs) with high sequence similarity to both bacterial RaxX and plant PSYs. Synthetic sulfated peptides corresponding to predicted MigPSYs stimulate root growth in Arabidopsis. MigPSY transcript levels are highest early in the infection cycle. Downregulation of MigPSY gene expression reduces root galling and egg production, suggesting that the MigPSYs serve as nematode virulence factors. Together, these results indicate that nematodes and bacteria exploit similar sulfated peptides to hijack plant developmental signaling pathways to facilitate parasitism.


Asunto(s)
Arabidopsis , Nematodos , Parásitos , Tylenchoidea , Animales , Plantas , Péptidos , Transducción de Señal , Tirosina , Enfermedades de las Plantas/microbiología , Tylenchoidea/genética , Raíces de Plantas
2.
Plant Cell Environ ; 47(8): 2811-2820, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679939

RESUMEN

Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.


Asunto(s)
Interacciones Huésped-Parásitos , Oxidación-Reducción , Enfermedades de las Plantas , Plantas , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Plantas/parasitología , Plantas/metabolismo , Plantas/parasitología , Nematodos/fisiología
3.
EMBO J ; 38(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31061171

RESUMEN

Plants are exposed to cellular damage by mechanical stresses, herbivore feeding, or invading microbes. Primary wound responses are communicated to neighboring and distal tissues by mobile signals. In leaves, crushing of large cell populations activates a long-distance signal, causing jasmonate production in distal organs. This is mediated by a cation channel-mediated depolarization wave and is associated with cytosolic Ca2+ transient currents. Here, we report that much more restricted, single-cell wounding in roots by laser ablation elicits non-systemic, regional surface potential changes, calcium waves, and reactive oxygen species (ROS) production. Surprisingly, laser ablation does not induce a robust jasmonate response, but regionally activates ethylene production and ethylene-response markers. This ethylene activation depends on calcium channel activities distinct from those in leaves, as well as a specific set of NADPH oxidases. Intriguingly, nematode attack elicits very similar responses, including membrane depolarization and regional upregulation of ethylene markers. Moreover, ethylene signaling antagonizes nematode feeding, delaying initial syncytial-phase establishment. Regional signals caused by single-cell wounding thus appear to constitute a relevant root immune response against small invaders.


Asunto(s)
Etilenos/biosíntesis , Nematodos/metabolismo , Raíces de Plantas/metabolismo , Estrés Mecánico , Estrés Fisiológico/fisiología , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Señalización del Calcio/fisiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Oxilipinas/metabolismo , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
4.
New Phytol ; 232(1): 318-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133755

RESUMEN

Reactive oxygen species (ROS) generated in response to infections often activate immune responses in eukaryotes including plants. In plants, ROS are primarily produced by plasma membrane-bound NADPH oxidases called respiratory burst oxidase homologue (Rboh). Surprisingly, Rbohs can also promote the infection of plants by certain pathogens, including plant parasitic cyst nematodes. The Arabidopsis genome contains 10 Rboh genes (RbohA-RbohJ). Previously, we showed that cyst nematode infection causes a localised ROS burst in roots, mediated primarily by RbohD and RbohF. We also found that plants deficient in RbohD and RbohF (rbohD/F) exhibit strongly decreased susceptibility to cyst nematodes, suggesting that Rboh-mediated ROS plays a role in promoting infection. However, little information is known of the mechanism by which Rbohs promote cyst nematode infection. Here, using detailed genetic and biochemical analyses, we identified WALLS ARE THIN1 (WAT1), an auxin transporter, as a downstream target of Rboh-mediated ROS during parasitic infections. We found that WAT1 is required to modulate the host's indole metabolism, including indole-3-acetic acid levels, in infected cells and that this reprogramming is necessary for successful establishment of the parasite. In conclusion, this work clarifies a unique mechanism that enables cyst nematodes to use the host's ROS for their own benefit.


Asunto(s)
Proteínas de Arabidopsis , Quistes , Nematodos , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Indoles , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Nematodos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Plant J ; 100(2): 221-236, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31322300

RESUMEN

Plant-parasitic nematodes (PPNs) cause tremendous yield losses worldwide in almost all economically important crops. The agriculturally most important PPNs belong to a small group of root-infecting sedentary endoparasites that includes cyst and root-knot nematodes. Both cyst and root-knot nematodes induce specialized long-term feeding structures in root vasculature from which they obtain their nutrients. A specialized cell layer in roots called the endodermis, which has cell walls reinforced with suberin deposits and a lignin-based Casparian strip (CS), protects the vascular cylinder against abiotic and biotic threats. To date, the role of the endodermis, and especially of suberin and the CS, during plant-nematode interactions was largely unknown. Here, we analyzed the role of suberin and CS during interaction between Arabidopsis plants and two sedentary root-parasitic nematode species, the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. We found that nematode infection damages the endodermis leading to the activation of suberin biosynthesis genes at nematode infection sites. Although feeding sites induced by both cyst and root-knot nematodes are surrounded by endodermis during early stages of infection, the endodermis is degraded during later stages of feeding site development, indicating periderm formation or ectopic suberization of adjacent tissue. Chemical suberin analysis showed a characteristic suberin composition resembling peridermal suberin in nematode-infected tissue. Notably, infection assays using Arabidopsis lines with CS defects and impaired compensatory suberization, revealed that the CS and suberization impact nematode infectivity and feeding site size. Taken together, our work establishes the role of the endodermal barrier system in defence against a soil-borne pathogen.


Asunto(s)
Enfermedades de las Plantas/parasitología , Raíces de Plantas/citología , Raíces de Plantas/parasitología , Tylenchoidea/patogenicidad , Animales , Arabidopsis/citología , Arabidopsis/metabolismo , Arabidopsis/parasitología , Pared Celular/metabolismo , Pared Celular/parasitología , Interacciones Huésped-Parásitos , Lípidos/fisiología , Raíces de Plantas/metabolismo
6.
Plant J ; 98(6): 1000-1014, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30801789

RESUMEN

Plants mount defense responses during pathogen attacks, and robust host defense suppression by pathogen effector proteins is essential for infection success. 4E02 is an effector of the sugar beet cyst nematode Heterodera schachtii. Arabidopsis thaliana lines expressing the effector-coding sequence showed altered expression levels of defense response genes, as well as higher susceptibility to both the biotroph H. schachtii and the necrotroph Botrytis cinerea, indicating a potential suppression of defenses by 4E02. Yeast two-hybrid analyses showed that 4E02 targets A. thaliana vacuolar papain-like cysteine protease (PLCP) 'Responsive to Dehydration 21A' (RD21A), which has been shown to function in the plant defense response. Activity-based protein profiling analyses documented that the in planta presence of 4E02 does not impede enzymatic activity of RD21A. Instead, 4E02 mediates a re-localization of this protease from the vacuole to the nucleus and cytoplasm, which is likely to prevent the protease from performing its defense function and at the same time, brings it in contact with novel substrates. Yeast two-hybrid analyses showed that RD21A interacts with multiple host proteins including enzymes involved in defense responses as well as carbohydrate metabolism. In support of a role in carbohydrate metabolism of RD21A after its effector-mediated re-localization, we observed cell wall compositional changes in 4E02 expressing A. thaliana lines. Collectively, our study shows that 4E02 removes RD21A from its defense-inducing pathway and repurposes this enzyme by targeting the active protease to different cell compartments.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteasas de Cisteína/metabolismo , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Animales , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Beta vulgaris/parasitología , Núcleo Celular/metabolismo , Pared Celular/metabolismo , Proteasas de Cisteína/genética , Citoplasma/metabolismo , Femenino , Proteínas del Helminto/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Transporte de Proteínas , Técnicas del Sistema de Dos Híbridos , Vacuolas/metabolismo
7.
Plant Cell Environ ; 43(5): 1160-1174, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32103526

RESUMEN

Plant-parasitic cyst nematodes induce hypermetabolic syncytial nurse cells in the roots of their host plants. Syncytia are their only food source. Cyst nematodes are sexually dimorphic, with their differentiation into male or female strongly influenced by host environmental conditions. Under favourable conditions with plenty of nutrients, more females develop, whereas mainly male nematodes develop under adverse conditions such as in resistant plants. Here, we developed and validated a method to predict the sex of beet cyst nematode (Heterodera schachtii) during the early stages of its parasitism in the host plant Arabidopsis thaliana. We collected root segments containing male-associated syncytia (MAS) or female-associated syncytia (FAS), isolated syncytial cells by laser microdissection, and performed a comparative transcriptome analysis. Genes belonging to categories of defence, nutrient deficiency, and nutrient starvation were over-represented in MAS as compared with FAS. Conversely, gene categories related to metabolism, modification, and biosynthesis of cell walls were over-represented in FAS. We used ß-glucuronidase analysis, qRT-PCR, and loss-of-function mutants to characterize FAS- and MAS-specific candidate genes. Our results demonstrate that various plant-based factors, including immune response, nutrient availability, and structural modifications, influence the sexual fate of the cyst nematodes.


Asunto(s)
Arabidopsis/parasitología , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Procesos de Determinación del Sexo , Tylenchoidea/fisiología , Animales , Femenino , Regulación de la Expresión Génica , Genes de Helminto , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
J Exp Bot ; 71(14): 4271-4284, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32242224

RESUMEN

Ascorbic acid (AA) is the major antioxidant buffer produced in the shoot tissue of plants. Previous studies on root-knot nematode (RKN; Meloidogyne graminicola)-infected rice (Oryza sativa) plants showed differential expression of AA-recycling genes, although their functional role was unknown. Our results confirmed increased dehydroascorbate (DHA) levels in nematode-induced root galls, while AA mutants were significantly more susceptible to nematode infection. External applications of ascorbate oxidase (AO), DHA, or reduced AA, revealed systemic effects of ascorbate oxidation on rice defence versus RKN, associated with a primed accumulation of H2O2 upon nematode infection. To confirm and further investigate these systemic effects, a transcriptome analysis was done on roots of foliar AO-treated plants, revealing activation of the ethylene (ET) response and jasmonic acid (JA) biosynthesis pathways in roots, which was confirmed by hormone measurements. Activation of these pathways by methyl-JA, or ethephon treatment can complement the susceptibility phenotype of the rice Vitamin C (vtc1) mutant. Experiments on the jasmonate signalling (jar1) mutant or using chemical JA/ET inhibitors confirm that the effects of ascorbate oxidation are dependent on both the JA and ET pathways. Collectively, our data reveal a novel pathway in which ascorbate oxidation induces systemic defence against RKNs.


Asunto(s)
Oryza , Tylenchoidea , Animales , Ácido Ascórbico , Peróxido de Hidrógeno , Enfermedades de las Plantas , Raíces de Plantas
9.
PLoS Pathog ; 13(4): e1006284, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28406987

RESUMEN

Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annually. An effective plant defence against pathogens relies on the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localised receptors leading to the activation of PAMP-triggered immunity (PTI). Extensive studies have been conducted to characterise the role of PTI in various models of plant-pathogen interactions. However, far less is known about the role of PTI in roots in general and in plant-nematode interactions in particular. Here we show that nematode-derived proteinaceous elicitor/s is/are capable of inducing PTI in Arabidopsis in a manner dependent on the common immune co-receptor BAK1. Consistent with the role played by BAK1, we identified a leucine-rich repeat receptor-like kinase, termed NILR1 that is specifically regulated upon infection by nematodes. We show that NILR1 is essential for PTI responses initiated by nematodes and nilr1 loss-of-function mutants are hypersusceptible to a broad category of nematodes. To our knowledge, NILR1 is the first example of an immune receptor that is involved in induction of basal immunity (PTI) in plants or in animals in response to nematodes. Manipulation of NILR1 will provide new options for nematode control in crop plants in future.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Tylenchoidea/fisiología , Animales , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
10.
Plant Physiol ; 178(2): 771-782, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30131422

RESUMEN

Water scarcity is a critical threat to global crop production. Here, we used the natural diversity of barley (Hordeum vulgare) to dissect the genetic control of proline (Pro) mediated drought stress adaptation. Genetic mapping and positional cloning of a major drought-inducible quantitative trait locus (QPro.S42-1H) revealed unique allelic variation in pyrroline-5-carboxylate synthase (P5cs1) between the cultivated cultivar Scarlett (ssp. vulgare) and the wild barley accession ISR42-8 (ssp. spontaneum). The putative causative mutations were located in the promoter of P5cs1 across the DNA binding motifs for abscisic acid-responsive element binding transcription factors. Introgression line (IL) S42IL-143 carrying the wild allele of P5cs1 showed significant up-regulation of P5cs1 expression compared to Scarlett, which was consistent with variation in Pro accumulation under drought. Next, we transiently expressed promoter::reporter constructs of ISR42-8 and Scarlett alleles in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. GUS expression analysis showed a significantly higher activation of the ISR42-8 promoter compared to Scarlett upon abscisic acid treatment. Notably, the ISR42-8 promoter activity was impaired in protoplasts isolated from the loss-of-function abf1abf2abf3abf4 quadruple mutant. A series of phenotypic evaluations demonstrated that S42IL-143 maintained leaf water content and photosynthetic activity longer than Scarlett under drought. These findings suggest that the ancestral variant of P5cs1 has the potential for drought tolerance and understanding drought physiology of barley and related crops.


Asunto(s)
Arabidopsis/genética , Hordeum/enzimología , Prolina/metabolismo , Pirroles/metabolismo , Sitios de Carácter Cuantitativo/genética , Agua/metabolismo , Adaptación Fisiológica , Alelos , Arabidopsis/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Sequías , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Raíces de Plantas/embriología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo
11.
Plant J ; 92(2): 211-228, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28746737

RESUMEN

Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN.


Asunto(s)
Arabidopsis/metabolismo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Tylenchoidea , Animales , Arabidopsis/parasitología , Arabidopsis/fisiología , Citocininas/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas , Interacciones Huésped-Parásitos , Metabolismo/fisiología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Raíces de Plantas/fisiología , Transducción de Señal/fisiología , Tylenchoidea/fisiología
12.
J Exp Bot ; 69(7): 1805-1814, 2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29378065

RESUMEN

Plant-parasitic cyst nematodes are obligate sedentary parasites that infect the roots of a broad range of host plants. Cyst nematodes are sexually dimorphic, but differentiation into male or female is strongly influenced by interactions with the host environment. Female populations typically predominate under favorable conditions, whereas male populations predominate under adverse conditions. Here, we performed a genome-wide association study (GWAS) in an Arabidopsis diversity panel to identify host loci underlying variation in susceptibility to cyst nematode infection. Three different susceptibility parameters were examined, with the aim of providing insights into the infection process, the number of females and males present in the infected plant, and the female-to-male sex ratio. GWAS results suggested that variation in sex ratio is associated with a novel quantitative trait locus allele on chromosome 4. Subsequent candidate genes and functional analyses revealed that a senescence-associated transcription factor, AtS40-3, and PPR may act in combination to influence nematode sex ratio. A detailed molecular characterization revealed that variation in nematode sex ratio was due to the disturbed common promoter of AtS40-3 and PPR genes. Additionally, single nucleotide polymorphisms in the coding sequence of AtS40-3 might contribute to the natural variation in nematode sex ratio.


Asunto(s)
Arabidopsis/genética , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Alelos , Animales , Arabidopsis/parasitología , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Razón de Masculinidad
13.
Proc Natl Acad Sci U S A ; 112(41): 12669-74, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417108

RESUMEN

Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.


Asunto(s)
Arabidopsis , Citocininas/metabolismo , Interacciones Huésped-Parásitos/fisiología , Nematodos/fisiología , Enfermedades de las Plantas/parasitología , Transducción de Señal , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/parasitología , Secuencia de Bases , Citocininas/genética , Datos de Secuencia Molecular
14.
J Exp Bot ; 68(21-22): 5949-5960, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29053864

RESUMEN

When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Tylenchoidea/fisiología , Animales , Arabidopsis/inmunología , Arabidopsis/parasitología , Proteínas de Arabidopsis/metabolismo , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Especificidad de la Especie
15.
Plant Physiol ; 169(1): 873-89, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26220952

RESUMEN

A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L(-1) average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus.


Asunto(s)
Genes de Plantas , Oryza/citología , Oryza/genética , Ozono/farmacología , Proteínas de Plantas/metabolismo , Ascorbato Oxidasa/metabolismo , Secuencia de Bases , Muerte Celular/efectos de los fármacos , Biología Computacional , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Variación Genética , Modelos Biológicos , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Transporte de Proteínas/efectos de los fármacos , Sitios de Carácter Cuantitativo/genética , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/genética
16.
J Exp Bot ; 67(7): 2049-61, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26842982

RESUMEN

Most plant-parasitic nematodes are obligate biotrophs feeding on the roots of their hosts. Whereas ectoparasites remain on the root surface and feed on the outer cell layers, endoparasitic nematodes enter the host to parasitize cells around or within the central cylinder. Nematode invasion and feeding causes tissue damage which may, in turn, lead to the activation of host basal defence responses. Hitherto, research interests in plant-nematode interaction have emphasized effector-triggered immunity rather than basal plant defence responses. However, some recent investigations suggest that basal defence pathways are not only activated but also play an important role in determining interaction outcomes. In this review we discuss the major findings and point out future directions to dissect the molecular mechanisms underlying plant basal defence to nematodes further.


Asunto(s)
Nematodos/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Plantas/parasitología , Animales
17.
Phytopathology ; 106(10): 1128-1138, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27552283

RESUMEN

The cyst nematode Heterodera filipjevi is a plant parasite causing substantial yield loss in wheat. Resistant cultivars are the preferred method of controlling cyst nematodes. Association mapping is a powerful approach to detect associations between phenotypic variation and genetic polymorphisms; in this way favorable traits such as resistance to pathogens can be located. Therefore, a genome-wide association study of 161 winter wheat accessions was performed with a 90K iSelect single nucleotide polymorphism (SNP) chip. Population structure analysis grouped into two major subgroups and first principal component accounted 6.16% for phenotypic diversity. The genome-wide linkage disequilibrium across wheat was 3 cM. Eleven quantitative trait loci (QTLs) on chromosomes 1AL, 2AS, 2BL, 3AL, 3BL, 4AS, 4AL, 5BL, and 7BL were identified using a mixed linear model false discovery rate of P < 0.01 that explained 43% of total genetic variation. This is the first report of QTLs conferring resistance to H. filipjevi in wheat. Eight QTLs on chromosomes 1AL, 2AS, 2BL, 3AL, 4AL, and 5BL were linked to putative genes known to be involved in plant-pathogen interactions. Two other QTLs on 3BL and one QTL on 7BL linked to putative genes known to be involved in abiotic stress.


Asunto(s)
Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Tylenchoidea/fisiología , Animales , Cromosomas de las Plantas/genética , Grano Comestible/inmunología , Grano Comestible/parasitología , Modelos Lineales , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple/genética , Triticum/inmunología , Triticum/parasitología
18.
New Phytol ; 207(3): 778-89, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25825039

RESUMEN

Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii-Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Estrés Fisiológico , Tylenchoidea/fisiología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Bioensayo , Cromatografía Líquida de Alta Presión , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Espectrometría de Masas , Oxilipinas/farmacología , Parásitos/fisiología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/parasitología , Ácido Salicílico/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos , Tylenchoidea/efectos de los fármacos
19.
Plant J ; 74(5): 852-66, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23480402

RESUMEN

The beet cyst nematode Heterodera schachtii induces syncytia in the roots of Arabidopsis thaliana, which are its only nutrient source. One gene, At1g64110, that is strongly up-regulated in syncytia as shown by RT-PCR, quantitative RT-PCR, in situ RT-PCR and promoter::GUS lines, encodes an AAA+-type ATPase. Expression of two related genes in syncytia, At4g28000 and At5g52882, was not detected or not different from control root segments. Using amiRNA lines and T-DNA mutants, we show that At1g64110 is important for syncytium and nematode development. At1g64110 was also inducible by wounding, jasmonic acid, salicylic acid, heat and cold, as well as drought, sodium chloride, abscisic acid and mannitol, indicating involvement of this gene in abiotic stress responses. We confirmed this using two T-DNA mutants that were more sensitive to abscisic acid and sodium chloride during seed germination and root growth. These mutants also developed significantly smaller roots in response to abscisic acid and sodium chloride. An in silico analysis showed that ATPase At1g64110 (and also At4g28000 and At5g52882) belong to the 'meiotic clade' of AAA proteins that includes proteins such as Vps4, katanin, spastin and MSP1.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácido Abscísico/farmacología , Animales , Arabidopsis/citología , Arabidopsis/parasitología , Ciclopentanos/farmacología , Sequías , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Gigantes/parasitología , Interacciones Huésped-Parásitos , Manitol/farmacología , Mutación , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/parasitología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Salicílico/farmacología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/parasitología , Cloruro de Sodio/farmacología , Estrés Mecánico , Temperatura , Tylenchoidea/fisiología
20.
New Phytol ; 201(2): 476-485, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117492

RESUMEN

The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Inositol-Oxigenasa/fisiología , Inositol/metabolismo , Nematodos/fisiología , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inositol-Oxigenasa/genética , Inositol-Oxigenasa/metabolismo , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA