RESUMEN
By mainly targeting larger predatory fish, commercial fisheries have indirectly promoted rapid increases in densities of their prey; smaller predatory fish like sprat, stickleback and gobies. This process, known as mesopredator release, has effectively transformed many marine offshore basins into mesopredator-dominated ecosystems. In this article, we discuss recent indications of trophic cascades on the Atlantic and Baltic coasts of Sweden, where increased abundances of mesopredatory fish are linked to increased nearshore production and biomass of ephemeral algae. Based on synthesis of monitoring data, we suggest that offshore exploitation of larger predatory fish has contributed to the increase in mesopredator fish also along the coasts, with indirect negative effects on important benthic habitats and coastal water quality. The results emphasize the need to rebuild offshore and coastal populations of larger predatory fish to levels where they regain their control over lower trophic levels and important links between offshore and coastal systems are restored.
Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biodiversidad , Biomasa , Peces/clasificación , Peces/fisiología , Conducta Predatoria , Agua de MarRESUMEN
We tested joint effects of predator loss and increased resource availability on the grazers' trophic level and the propagation of trophic interactions in a benthic food web by excluding larger predatory fish from cages and manipulating nutrients in the coastal zone of the Baltic Sea. The combination of nutrient enrichment and excluding larger predators induced an increase in medium-sized predatory fish (three-spined stickleback). The meso-predator fish in turn did not change the total abundance of the invertebrate herbivores, but did cause a substantial shift in their community composition towards the dominance of gastropods by reducing amphipods by 40-60%, while gastropods were left unchanged. The shift in grazer composition generated a 23 times higher producer biomass, but only under nutrient enrichment. Our results show that top-predator declines can substantially shift the species composition at the grazers' level, but that cascading effects on producers by a trophic cascade strongly depend on resource availability.
RESUMEN
We tested the relative strength of direct versus indirect effects of an aquatic omnivore depending on the functional composition of grazers by manipulating the presence of gastropod and amphipod grazers and omnivorous shrimp in outdoor mesocosms. By selectively preying upon amphipods and reducing their abundance by 70-80%, omnivorous shrimp favoured the dominance of gastropods. While gastropods were the main microalgal grazers, amphipods controlled macroalgal biomass in the experiment. However, strong predation on the amphipod by the shrimp had no significant indirect effects on macroalgal biomass, indicating that when amphipod abundances declined, complementary feeding by the omnivore on macroalgae may have suppressed a trophic cascade. Accordingly, in the absence of amphipods, the shrimp grazed significantly on green algae and thereby suppressed the diversity of the macroalgal community. Our experiment demonstrates direct consumer effects by an omnivore on both the grazer and producer trophic levels in an aquatic food web, regulated by prey availability.