Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Am Soc Nephrol ; 30(3): 421-441, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30760496

RESUMEN

BACKGROUND: Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS: We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS: We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS: We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.

2.
J Lipid Res ; 57(3): 433-42, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26711138

RESUMEN

Long-chain acyl-CoA synthetase 1 (ACSL1) converts free fatty acids into acyl-CoAs. Mouse studies have revealed that ACSL1 channels acyl-CoAs to ß-oxidation, thereby reducing glucose utilization, and is required for diabetes-accelerated atherosclerosis. The role of ACSL1 in humans is unknown. We therefore examined common variants in the human ACSL1 locus by genetic association studies for fasting glucose, diabetes status, and preclinical atherosclerosis by using the MAGIC and DIAGRAM consortia; followed by analyses in participants from the Multi-Ethnic Study of Atherosclerosis, the Penn-T2D consortium, and a meta-analysis of subclinical atherosclerosis in African Americans; and finally, expression quantitative trait locus analysis and identification of DNase I hypersensitive sites (DHS). The results show that three SNPs in ACSL1 (rs7681334, rs735949, and rs4862423) are associated with fasting glucose or diabetes status in these large (>200,000 subjects) data sets. Furthermore, rs4862423 is associated with subclinical atherosclerosis and coincides with a DHS highly accessible in human heart. SNP rs735949 is in strong linkage disequilibrium with rs745805, significantly associated with ACSL1 levels in skin, suggesting tissue-specific regulatory mechanisms. This study provides evidence in humans of ACSL1 SNPs associated with fasting glucose, diabetes, and subclinical atherosclerosis and suggests links among these traits and acyl-CoA synthesis.


Asunto(s)
Aterosclerosis/genética , Glucemia/metabolismo , Coenzima A Ligasas/genética , Diabetes Mellitus Tipo 2/genética , Ayuno/sangre , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Negro o Afroamericano/genética , Calcinosis/genética , Cromatina/genética , Enfermedad de la Arteria Coronaria/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Humanos , Sitios de Carácter Cuantitativo/genética
3.
Nat Genet ; 39(1): 120-5, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17159978

RESUMEN

Infections with the malaria parasite Plasmodium falciparum result in more than 1 million deaths each year worldwide. Deciphering the evolutionary history and genetic variation of P. falciparum is critical for understanding the evolution of drug resistance, identifying potential vaccine candidates and appreciating the effect of parasite variation on prevalence and severity of malaria in humans. Most studies of natural variation in P. falciparum have been either in depth over small genomic regions (up to the size of a small chromosome) or genome wide but only at low resolution. In an effort to complement these studies with genome-wide data, we undertook shotgun sequencing of a Ghanaian clinical isolate (with fivefold coverage), the IT laboratory isolate (with onefold coverage) and the chimpanzee parasite P. reichenowi (with twofold coverage). We compared these sequences with the fully sequenced P. falciparum 3D7 isolate genome. We describe the most salient features of P. falciparum polymorphism and adaptive evolution with relation to gene function, transcript and protein expression and cellular localization. This analysis uncovers the primary evolutionary changes that have occurred since the P. falciparum-P. reichenowi speciation and changes that are occurring within P. falciparum.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma de Protozoos , Plasmodium falciparum/genética , Animales , Femenino , Especiación Genética , Ghana , Humanos , Malaria Falciparum/parasitología , Sistemas de Lectura Abierta , Pan troglodytes , Plasmodium/genética , Polimorfismo de Nucleótido Simple
4.
EBioMedicine ; 41: 427-442, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30827930

RESUMEN

BACKGROUND: Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical behavior. METHODS: We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling (RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated analyses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through The Cancer Genome Atlas (TCGA). FINDINGS: Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients. Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1 producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expression changes in RCC. INTERPRETATION: Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes. Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral LTRs.


Asunto(s)
Retrovirus Endógenos/genética , Epigenómica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Reductasas del Citocromo/genética , Retrovirus Endógenos/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 1 Inducible por Hipoxia/genética , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Neoplasias Renales/patología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Hidrolasas Diéster Fosfóricas/genética , Regiones Promotoras Genéticas , Proteínas/genética , Pirofosfatasas/genética , ARN Largo no Codificante , Tasa de Supervivencia , Secuencias Repetidas Terminales/genética , Enzimas Ubiquitina-Conjugadoras/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-25972927

RESUMEN

BACKGROUND: The brain, spinal cord, and neural retina comprise the central nervous system (CNS) of vertebrates. Understanding the regulatory mechanisms that underlie the enormous cell-type diversity of the CNS is a significant challenge. Whole-genome mapping of DNase I-hypersensitive sites (DHSs) has been used to identify cis-regulatory elements in many tissues. We have applied this approach to the mouse CNS, including developing and mature neural retina, whole brain, and two well-characterized brain regions, the cerebellum and the cerebral cortex. RESULTS: For the various regions and developmental stages of the CNS that we analyzed, there were approximately the same number of DHSs; however, there were many DHSs unique to each CNS region and developmental stage. Many of the DHSs are likely to mark enhancers that are specific to the specific CNS region and developmental stage. We validated the DNase I mapping approach for identification of CNS enhancers using the existing VISTA Browser database and with in vivo and in vitro electroporation of the retina. Analysis of transcription factor consensus sites within the DHSs shows distinct region-specific profiles of transcriptional regulators particular to each region. Clustering developmentally dynamic DHSs in the retina revealed enrichment of developmental stage-specific transcriptional regulators. Additionally, we found reporter gene activity in the retina driven from several previously uncharacterized regulatory elements surrounding the neurodevelopmental gene Otx2. Identification of DHSs shared between mouse and human showed region-specific differences in the evolution of cis-regulatory elements. CONCLUSIONS: Overall, our results demonstrate the potential of genome-wide DNase I mapping to cis-regulatory questions regarding the regional diversity within the CNS. These data represent an extensive catalogue of potential cis-regulatory elements within the CNS that display region and temporal specificity, as well as a set of DHSs common to CNS tissues. Further examination of evolutionary conservation of DHSs between CNS regions and different species may reveal important cis-regulatory elements in the evolution of the mammalian CNS.

6.
J Exp Biol ; 209(Pt 19): 3837-50, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16985200

RESUMEN

Drosophila melanogaster has evolved the ability to tolerate and utilize high levels of ethanol and acetic acid encountered in its rotting-fruit niche. Investigation of this phenomenon has focused on ethanol catabolism, particularly by the enzyme alcohol dehydrogenase. Here we report that survival under ethanol and acetic acid stress in D. melanogaster from high- and low-latitude populations is an integrated consequence of toxin catabolism and alteration of physical properties of cellular membranes by ethanol. Metabolic detoxification contributed to differences in ethanol tolerance between populations and acclimation temperatures via changes in both alcohol dehydrogenase and acetyl-CoA synthetase mRNA expression and enzyme activity. Independent of changes in ethanol catabolism, rapid thermal shifts that change membrane fluidity had dramatic effects on ethanol tolerance. Cold temperature treatments upregulated phospholipid metabolism genes and enhanced acetic acid tolerance, consistent with the predicted effects of restoring membrane fluidity. Phospholipase D was expressed at high levels in all treatments that conferred enhanced ethanol tolerance, suggesting that this lipid-mediated signaling enzyme may enhance tolerance by sequestering ethanol in membranes as phophatidylethanol. These results reveal new candidate genes underlying toxin tolerance and membrane adaptation to temperature in Drosophila and provide insight into how interactions between these phenotypes may underlie the maintenance of latitudinal clines in ethanol tolerance.


Asunto(s)
Ácido Acético/metabolismo , Adaptación Fisiológica/fisiología , Drosophila melanogaster/fisiología , Etanol/metabolismo , Regulación de la Expresión Génica/fisiología , Lípidos de la Membrana/fisiología , Modelos Biológicos , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Alcohol Deshidrogenasa , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fosfolipasa D/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA