Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurooncol ; 117(1): 15-24, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24510433

RESUMEN

Glioblastoma (GBM) is the most common malignant adult brain tumor and carries a poor prognosis due to primary and acquired resistance. While many cellular features of GBM have been documented, it is unclear if cells within these tumors extend a primary cilium, an organelle whose associated signaling pathways may regulate proliferation, migration, and survival of neural precursor and tumor cells. Using immunohistochemical and electron microscopy (EM) techniques, we screened human GBM tumor biopsies and primary cell lines for cilia. Immunocytochemical staining of five primary GBM cell lines revealed that between 8 and 25 % of the cells in each line possessed gamma tubulin-positive basal bodies from which extended acetylated, alpha-tubulin-positive axonemes. EM analyses confirmed the presence of cilia at the cell surface and revealed that their axonemes contained organized networks of microtubules, a structural feature consistent with our detection of IFT88 and Arl13b, two trafficked cilia proteins, along the lengths of the axonemes. Notably, cilia were detected in each of 23 tumor biopsies (22 primary and 1 recurrent) examined. These cilia were distributed across the tumor landscape including regions proximal to the vasculature and within necrotic areas. Moreover, ciliated cells within these tumors co-stained with Ki67, a marker for actively dividing cells, and ZEB1, a transcription factor that is upregulated in GBM and linked to tumor initiation, invasion, and chemoresistance. Collectively, our data show that subpopulations of cells within human GBM tumors are ciliated. In view of mounting evidence supporting roles of primary cilia in tumor initiation and propagation, it is likely that further study of the effects of cilia on GBM tumor cell function will improve our understanding of GBM pathogenesis and may provide new directions for GBM treatment strategies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/ultraestructura , Cilios/ultraestructura , Glioblastoma/metabolismo , Glioblastoma/ultraestructura , Factores de Ribosilacion-ADP/metabolismo , Anciano de 80 o más Años , Axonema/metabolismo , Axonema/ultraestructura , Cuerpos Basales/metabolismo , Cuerpos Basales/ultraestructura , Línea Celular Tumoral , Cilios/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
2.
Cancer Lett ; 571: 216349, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37579831

RESUMEN

Glioblastoma is the most lethal brain cancer in adults. These incurable tumors are characterized by profound heterogeneity, therapy resistance, and diffuse infiltration. These traits have been linked to cancer stem cells, which are important for glioblastoma tumor progression and recurrence. The fibroblast growth factor receptor 1 (FGFR1) signaling pathway is a known regulator of therapy resistance and cancer stemness in glioblastoma. FGFR1 expression shows intertumoral heterogeneity and higher FGFR1 expression is associated with a significantly poorer survival in glioblastoma patients. The role of FGFR1 in tumor invasion has been studied in many cancers, but whether and how FGFR1 mediates glioblastoma invasion remains to be determined. Here, we investigated the distribution and functional relevance of FGFR1 and FGFR2 in human glioblastoma xenograft models. We found FGFR1, but not FGFR2, expressed in invasive glioblastoma cells. Loss of FGFR1, but not FGFR2, significantly reduced cell migration in vitro and tumor invasion in human glioblastoma xenografts. Comparative analysis of RNA-sequencing data of FGFR1 and FGFR2 knockdown glioblastoma cells revealed a FGFR1-specific gene regulatory network associated with tumor invasion. Our study reveals new gene candidates linked to FGFR1-mediated glioblastoma invasion.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Humanos , Neoplasias Encefálicas/genética , Glioblastoma/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , ARN , Transducción de Señal , Animales
3.
Oncotarget ; 7(6): 7029-43, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26760767

RESUMEN

KIF3A, a component of the kinesin-2 motor, is necessary for the progression of diverse tumor types. This is partly due to its role in regulating ciliogenesis and cell responsiveness to sonic hedgehog (SHH). Notably, primary cilia have been detected in human glioblastoma multiforme (GBM) tumor biopsies and derived cell lines. Here, we asked whether disrupting KIF3A in GBM cells affected ciliogenesis, in vitro growth and responsiveness to SHH, or tumorigenic behavior in vivo. We used a lentiviral vector to create three patient-derived GBM cell lines expressing a dominant negative, motorless form of Kif3a (dnKif3a). In all unmodified lines, we found that most GBM cells were capable of producing ciliated progeny and that dnKif3a expression in these cells ablated ciliogenesis. Interestingly, unmodified and dnKif3a-expressing cell lines displayed differential sensitivities and pathway activation to SHH and variable tumor-associated survival following mouse xenografts. In one cell line, SHH-induced cell proliferation was prevented in vitro by either expressing dnKif3a or inhibiting SMO signaling using cyclopamine, and the survival times of mice implanted with dnKif3a-expressing cells were increased. In a second line, expression of dnKif3a increased the cells' baseline proliferation while, surprisingly, sensitizing them to SHH-induced cell death. The survival times of mice implanted with these dnKif3a-expressing cells were decreased. Finally, expression of dnKif3a in a third cell line had no effect on cell proliferation, SHH sensitivity, or mouse survival times. These findings indicate that KIF3A is essential for GBM cell ciliogenesis, but its role in modulating GBM cell behavior is highly variable.


Asunto(s)
Carcinogénesis/patología , Cilios/fisiología , Genes Dominantes/genética , Glioblastoma/patología , Proteínas Hedgehog/metabolismo , Cinesinas/antagonistas & inhibidores , Adulto , Anciano , Animales , Apoptosis , Western Blotting , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proliferación Celular , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Hedgehog/genética , Humanos , Técnicas para Inmunoenzimas , Cinesinas/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
EMBO Mol Med ; 5(8): 1196-212, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23818228

RESUMEN

Glioblastoma remains one of the most lethal types of cancer, and is the most common brain tumour in adults. In particular, tumour recurrence after surgical resection and radiation invariably occurs regardless of aggressive chemotherapy. Here, we provide evidence that the transcription factor ZEB1 (zinc finger E-box binding homeobox 1) exerts simultaneous influence over invasion, chemoresistance and tumourigenesis in glioblastoma. ZEB1 is preferentially expressed in invasive glioblastoma cells, where the ZEB1-miR-200 feedback loop interconnects these processes through the downstream effectors ROBO1, c-MYB and MGMT. Moreover, ZEB1 expression in glioblastoma patients is predictive of shorter survival and poor Temozolomide response. Our findings indicate that this regulator of epithelial-mesenchymal transition orchestrates key features of cancer stem cells in malignant glioma and identify ROBO1, OLIG2, CD133 and MGMT as novel targets of the ZEB1 pathway. Thus, ZEB1 is an important candidate molecule for glioblastoma recurrence, a marker of invasive tumour cells and a potential therapeutic target, along with its downstream effectors.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Ratones SCID , Invasividad Neoplásica , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Receptores Inmunológicos/metabolismo , Temozolomida , Resultado del Tratamiento , Proteínas Supresoras de Tumor/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Proteínas Roundabout
5.
PLoS One ; 7(9): e44207, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970179

RESUMEN

To better understand the short and long-term effects of stress on the developing cerebral cortex, it is necessary to understand how early stress response genes protect or permanently alter cells. One family of highly conserved, stress response genes is the growth arrest and DNA damage-45 (Gadd45) genes. The expression of these genes is induced by a host of genotoxic, drug, and environmental stressors. Here we examined the impact of altering the expression of Gadd45alpha (Gadd45a), a member of the Gadd45 protein family that is expressed throughout the developing cortices of mice and humans. To manipulate levels of Gadd45a protein in developing mouse cortex, we electroporated cDNA plasmids encoding either Gadd45a or Gadd45a shRNA to either overexpress or knockdown Gadd45a levels in the developing cortices of mice, respectively. The effects of these manipulations were assessed by examining the fates and morphologies of the labeled neurons. Gadd45a overexpression both in vitro and in vivo significantly impaired the morphology of neurons, decreasing neurite complexity, inducing soma hypertrophy and increasing cell death. Knockdown of Gadd45a partially inhibited neuronal migration and reduced neurite complexity, an effect that was reversed in the presence of an shRNA-resistant Gadd45a. Finally, we found that shRNA against MEKK4, a direct target of Gadd45a, also stunted neurite outgrowth. Our findings suggest that the expression of Gadd45a in normal, developing brain is tightly regulated and that treatments or environmental stimuli that alter its expression could produce significant changes in neuronal circuitry development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neocórtex/embriología , Neocórtex/metabolismo , Neuritas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Neocórtex/patología , Proteínas Nucleares/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA