Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(11): 1049-1054, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38052031

RESUMEN

ABSTRACT: We show that red cell exchange (RCE) treats hyperleukocytosis in acute leukemia. RCE provided similar leukoreduction to standard therapeutic leukoreduction and could be superior in patients with severe anemia or monocytic leukemias or when requiring rapid treatment.


Asunto(s)
Leucemia Monocítica Aguda , Leucemia Mieloide Aguda , Leucostasis , Adulto , Humanos , Leucostasis/terapia , Leucemia Mieloide Aguda/terapia , Leucemia Monocítica Aguda/terapia , Enfermedad Aguda , Leucaféresis , Leucocitosis/terapia
2.
Blood ; 141(24): 2993-3005, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023370

RESUMEN

Antibody binding to a plasma metalloprotease, a disintegrin and metalloproteinase with thrombospondin type 1 repeats 13 (ADAMTS13), is necessary for the development of immune thrombotic thrombocytopenic purpura (iTTP). Inhibition of ADAMTS13-mediated von Willebrand factor (VWF) cleavage by such antibodies clearly plays a role in the pathophysiology of the disease, although the mechanisms by which they inhibit ADAMTS13 enzymatic function are not fully understood. At least some immunoglobulin G-type antibodies appear to affect the conformational accessibility of ADAMTS13 domains involved in both substrate recognition and inhibitory antibody binding. We used single-chain fragments of the variable region previously identified via phage display from patients with iTTP to explore the mechanisms of action of inhibitory human monoclonal antibodies. Using recombinant full-length ADAMTS13, truncated ADAMTS13 variants, and native ADAMTS13 in normal human plasma, we found that, regardless of the conditions tested, all 3 inhibitory monoclonal antibodies tested affected enzyme turnover rate much more than substrate recognition of VWF. Hydrogen-to-deuterium exchange plus mass spectrometry experiments with each of these inhibitory antibodies demonstrated that residues in the active site of the catalytic domain of ADAMTS13 are differentially exposed to solvent in the presence and absence of monoclonal antibody binding. These results support the hypothesis that inhibition of ADAMTS13 in iTTP may not necessarily occur because the antibodies directly prevent VWF binding, but instead because of allosteric effects that impair VWF cleavage, likely by affecting the conformation of the catalytic center in the protease domain of ADAMTS13. Our findings provide novel insight into the mechanism of autoantibody-mediated inhibition of ADAMTS13 and pathogenesis of iTTP.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Trombosis , Humanos , Anticuerpos Monoclonales , Factor de von Willebrand/metabolismo , Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Autoanticuerpos
3.
Bioconjug Chem ; 33(7): 1286-1294, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35710322

RESUMEN

Engineering drug delivery systems for prolonged pharmacokinetics (PK) has been an ongoing pursuit for nearly 50 years. The gold standard for PK enhancement is the coating of nanoparticles with polymers, namely polyethylene glycol (PEGylation), which has been applied in several clinically used products. In the present work, we utilize the longest circulating and most abundant component of blood─the erythrocyte─to improve the PK behavior of liposomes. Antibody-mediated coupling of liposomes to erythrocytes was tested in vitro to identify a loading dose that did not adversely impact the carrier cells. Injection of erythrocyte targeting liposomes into mice resulted in a ∼2-fold improvement in the area under the blood concentration versus time profile versus PEGylated liposomes and a redistribution from the plasma into the cellular fraction of blood. These results suggest that in vivo targeting of erythrocytes is a viable strategy to improve liposome PK relative to current, clinically viable strategies.


Asunto(s)
Liposomas , Polietilenglicoles , Animales , Sistemas de Liberación de Medicamentos , Eritrocitos , Liposomas/farmacocinética , Ratones , Polietilenglicoles/farmacocinética , Polímeros
4.
Blood ; 135(10): 713-723, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31951650

RESUMEN

Chimeric antigen receptor (CAR) T cells have radically improved the treatment of B cell-derived malignancies by targeting CD19. The success has not yet expanded to treat acute myeloid leukemia (AML). We developed a Sequentially Tumor-Selected Antibody and Antigen Retrieval (STAR) system to rapidly isolate multiple nanobodies (Nbs) that preferentially bind AML cells and empower CAR T cells with anti-AML efficacy. STAR-isolated Nb157 specifically bound CD13, which is highly expressed in AML cells, and CD13 CAR T cells potently eliminated AML in vitro and in vivo. CAR T cells bispecific for CD13 and TIM3, which are upregulated in AML leukemia stem cells, eradicated patient-derived AML, with much reduced toxicity to human bone marrow stem cells and peripheral myeloid cells in mouse models, highlighting a promising approach for developing effective AML CAR T cell therapy.


Asunto(s)
Leucemia Mieloide Aguda , Receptores de Antígenos de Linfocitos T , Animales , Antígenos CD13 , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Inmunoterapia Adoptiva , Ratones , Linfocitos T
5.
FASEB J ; 31(2): 761-770, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27836986

RESUMEN

Endothelial thrombomodulin (TM) regulates coagulation and inflammation via several mechanisms, including production of activated protein C (APC). Recombinant APC and soluble fragments of TM (sTM) have been tested in settings associated with insufficiency of the endogenous TM/APC pathway, such as sepsis. We previously designed a fusion protein of TM [single-chain variable fragment antibody (scFv)/TM] targeted to red blood cells (RBCs) to improve pharmacokinetics and antithrombotic effects without increasing bleeding. Here, scFv/TM was studied in mouse models of systemic inflammation and ischemia-reperfusion injury. Injected concomitantly with or before endotoxin, scFv/TM provided more potent protection against liver injury and release of pathological mediators than sTM, showing similar efficacy at up to 50-fold lower doses. scFv/TM provided protection when injected after endotoxin, whereas sTM did not, and augmented APC production by thrombin ∼50-fold more than sTM. However, scFv/TM injected after endotoxin did not reduce thrombin/antithrombin complexes; nor did antibodies that block APC anticoagulant activity suppress the prophylactic anti-inflammatory effect of scFv/TM. Therefore, similar to endogenous TM, RBC-anchored scFv/TM activates several protective pathways. Finally, scFv/TM was more effective at reducing cerebral infarct volume and alleviated neurological deficits than sTM after cerebral ischemia/reperfusion injury. These results indicate that RBC-targeted scFv/TM exerts multifaceted cytoprotective effects and may find utility in systemic and focal inflammatory and ischemic disorders.-Carnemolla, R., Villa, C. H., Greineder, C. F., Zaitseva, S., Patel, K. R., Kowalska, M. A., Atochin, D. N., Cines, D. B., Siegel, D. L., Esmon, C. T., Muzykantov, V. R. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury.


Asunto(s)
Endotoxemia/prevención & control , Eritrocitos/metabolismo , Daño por Reperfusión/prevención & control , Trombomodulina/administración & dosificación , Trombomodulina/uso terapéutico , Animales , Inflamación/tratamiento farmacológico , Masculino , Proteínas de la Fusión de la Membrana , Ratones , Ratones Endogámicos C57BL , Trombomodulina/química
6.
Proc Natl Acad Sci U S A ; 112(31): 9620-5, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26203127

RESUMEN

Acquired thrombotic thrombocytopenic purpura (TTP), a thrombotic disorder that is fatal in almost all cases if not treated promptly, is primarily caused by IgG-type autoantibodies that inhibit the ability of the ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) metalloprotease to cleave von Willebrand factor (VWF). Because the mechanism of autoantibody-mediated inhibition of ADAMTS13 activity is not known, the only effective therapy so far is repeated whole-body plasma exchange. We used hydrogen-deuterium exchange mass spectrometry (HX MS) to determine the ADAMTS13 binding epitope for three representative human monoclonal autoantibodies, isolated from TTP patients by phage display as tethered single-chain fragments of the variable regions (scFvs). All three scFvs bind the same conformationally discontinuous epitopic region on five small solvent-exposed loops in the spacer domain of ADAMTS13. The same epitopic region is also bound by most polyclonal IgG autoantibodies in 23 TTP patients that we tested. The ability of ADAMTS13 to proteolyze VWF is impaired by the binding of autoantibodies at the epitopic loops in the spacer domain, by the deletion of individual epitopic loops, and by some local mutations. Structural considerations and HX MS results rule out any disruptive structure change effect in the distant ADAMTS13 metalloprotease domain. Instead, it appears that the same ADAMTS13 loop segments that bind the autoantibodies are also responsible for correct binding to the VWF substrate. If so, the autoantibodies must prevent VWF proteolysis simply by physically blocking normal ADAMTS13 to VWF interaction. These results point to the mechanism for autoantibody action and an avenue for therapeutic intervention.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Mapeo Epitopo , Espectrometría de Masas/métodos , Púrpura Trombocitopénica Trombótica/patología , Púrpura Trombocitopénica Trombótica/terapia , Proteínas ADAM/sangre , Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Adulto , Anciano , Secuencia de Aminoácidos , Antígenos/metabolismo , Sitios de Unión , Unión Competitiva , Niño , Demografía , Epítopos/química , Femenino , Humanos , Inmunoglobulina G/metabolismo , Cinética , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Unión Proteica , Proteolisis , Alineación de Secuencia , Eliminación de Secuencia , Anticuerpos de Cadena Única/metabolismo , Adulto Joven
7.
Blood ; 125(21): 3326-34, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25800050

RESUMEN

ADAMTS13 metalloprotease cleaves von Willebrand factor (VWF), thereby inhibiting platelet aggregation and arterial thrombosis. An inability to cleave ultralarge VWF resulting from hereditary or acquired deficiency of plasma ADAMTS13 activity leads to a potentially fatal syndrome, thrombotic thrombocytopenic purpura (TTP). Plasma exchange is the most effective initial therapy for TTP to date. Here, we report characterization of transgenic mice expressing recombinant human ADAMTS13 (rADAMTS13) in platelets and its efficacy in inhibiting arterial thrombosis and preventing hereditary and acquired antibody-mediated TTP in murine models. Western blotting and fluorescent resonance energy transfer assay detect full-length rADAMTS13 protein and its proteolytic activity, respectively, in transgenic (Adamts13(-/-)Plt(A13)), but not in wild-type and Adamts13(-/-), platelets. The expressed rADAMTS13 is released on stimulation with thrombin and collagen, but less with 2MesADP. Platelet-delivered rADAMTS13 is able to inhibit arterial thrombosis after vascular injury and prevent the onset and progression of Shigatoxin-2 or recombinant murine VWF-induced TTP syndrome in mice despite a lack of plasma ADAMTS13 activity resulting from the ADAMTS13 gene deletion or the antibody-mediated inhibition of plasma ADAMTS13 activity. These findings provide a proof of concept that platelet-delivered ADAMTS13 may be explored as a novel treatment of arterial thrombotic disorders, including hereditary and acquired TTP, in the presence of anti-ADAMTS13 autoantibodies.


Asunto(s)
Proteínas ADAM/metabolismo , Terapia Genética/métodos , Púrpura Trombocitopénica Trombótica/prevención & control , Trombosis/complicaciones , Proteínas ADAM/administración & dosificación , Proteína ADAMTS13 , Animales , Plaquetas/metabolismo , Western Blotting , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Púrpura Trombocitopénica Trombótica/etiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
8.
J Autoimmun ; 73: 30-41, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27289167

RESUMEN

At birth, the human immune system already contains substantial levels of polymeric IgM, that include autoantibodies to neo-epitopes on apoptotic cells (ACs) that are proposed to play homeostatic and anti-inflammatory roles. Yet the biologic origins and developmental regulation of these naturally arising antibodies remain poorly understood. Herein, we report that levels of IgM-antibodies to malondialdehyde (MDA) protein adducts, a common type of in vivo generated oxidative stress-related neoepitope, directly correlate with the relative binding of neonatal-IgM to ACs. Levels of IgM to phosphorylcholine (PC), a natural antibody prevalent in adults, were relatively scant in cord blood, while there was significantly greater relative representation of IgM anti-MDA antibodies in newborns compared to adults. To investigate the potential interrelationships between neonatal IgM with pathogenic IgG-autoantibodies, we studied 103 newborns born to autoimmune mothers with IgG anti-Ro (i.e., 70 with neonatal lupus and 33 without neonatal lupus). In these subjects the mean levels of IgM anti-Ro60 were significantly higher than in the newborns from non-autoimmune mothers. In contrast, levels of IgM anti-MDA in IgG anti-Ro exposed neonates were significantly lower than in neonates from non-autoimmune mothers. The presence or absence of neonatal lupus did not appear to influence the total levels of IgM in the anti-Ro exposed newborns. Taken together, our studies provide evidence that the immune development of the natural IgM-repertoire may be affected, and become imprinted by, the transfer of maternal IgG into the fetus.


Asunto(s)
Apoptosis/inmunología , Autoanticuerpos/inmunología , Epítopos/inmunología , Feto/inmunología , Inmunoglobulina M/inmunología , Intercambio Materno-Fetal/inmunología , Estrés Oxidativo/inmunología , Ribonucleoproteínas/inmunología , Adulto , Anticuerpos Antiidiotipos/sangre , Autoanticuerpos/sangre , Autoantígenos/inmunología , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Femenino , Sangre Fetal/inmunología , Humanos , Inmunoglobulina G/inmunología , Recién Nacido , Malondialdehído/efectos adversos , Malondialdehído/química , Malondialdehído/inmunología , Madres , Fosforilcolina/efectos adversos , Fosforilcolina/sangre , Embarazo , Complicaciones del Embarazo , Ribonucleoproteínas/química
10.
Transfusion ; 56(7): 1763-74, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27040144

RESUMEN

BACKGROUND: Acquired thrombotic thrombocytopenia purpura (TTP) is a life-threatening illness caused by autoantibodies that decrease the activity of ADAMTS13, the von Willebrand factor-cleaving protease. Despite efficacy of plasma exchange, mortality remains high and relapse is common. Improved therapies may come from understanding the diversity of pathogenic autoantibodies on a molecular or genetic level. Cloning comprehensive repertoires of patient autoantibodies can provide the necessary tools for studying immunobiology of disease and developing animal models. STUDY DESIGN AND METHODS: Anti-ADAMTS13 antibodies were cloned from four patients with acquired TTP using phage display and characterized with respect to genetic origin, inhibition of ADAMTS13 proteolytic activity, and epitope specificity. Anti-idiotypic antisera raised to a subset of autoantibodies enabled comparison of their relatedness to each other and to polyclonal immunoglobulin (Ig)G in patient plasma. RESULTS: Fifty-one unique antibodies were isolated comprising epitope specificities resembling the diversity found in circulating patient IgG. Antibodies directed both to the amino terminal domains and to those requiring the ADAMTS13 cysteine-rich/spacer region for binding inhibited proteolytic activity, while those solely targeting carboxy-terminal domains were noninhibitory. Anti-idiotypic antisera raised to a subset of antibody clones crossreacted with and reduced the inhibitory activity of polyclonal IgG from a set of unrelated patients. CONCLUSIONS: Anti-ADAMTS13 autoantibodies isolated by repertoire cloning display the diversity of epitope specificities found in patient plasma and provide tools for developing animal models of acquired TTP. Shared idiotypes of inhibitory clones with circulating IgG from multiple patients suggest common features of pathogenic autoantibodies that could be exploited for developing more targeted therapies.


Asunto(s)
Proteína ADAMTS13/inmunología , Autoanticuerpos/aislamiento & purificación , Púrpura Trombocitopénica Trombótica/inmunología , Adulto , Especificidad de Anticuerpos , Técnicas de Visualización de Superficie Celular , Niño , Clonación Molecular , Reacciones Cruzadas/inmunología , Mapeo Epitopo , Humanos , Inmunoglobulina G/sangre , Persona de Mediana Edad
11.
Transfusion ; 56(7): 1775-85, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27040023

RESUMEN

BACKGROUND: Acquired thrombotic thrombocytopenic purpura (TTP) is a potentially fatal disease in which ultralarge von Willebrand factor (UL-VWF) multimers accumulate as a result of autoantibody inhibition of the VWF protease, ADAMTS13. Current treatment is not specifically directed at the responsible autoantibodies and in some cases is ineffective or of transient benefit. More rational, reliable, and durable therapies are needed, and a human autoantibody-mediated animal model would be useful for their development. Previously, TTP patient anti-ADAMTS13 single-chain variable-region fragments (scFv's) were cloned that inhibited ADAMTS13 proteolytic activity in vitro and expressed features in common with inhibitory immunoglobulin G in patient plasma. Here, pathogenicity of these scFv's is explored in vivo by transfecting mice with inhibitory antibody cDNA. STUDY DESIGN AND METHODS: Hydrodynamic tail vein injection of naked DNA encoding human anti-ADAMTS13 scFv was used to create sustained ADAMTS13 inhibition in mice. Accumulation of UL-VWF multimers was measured and formation of platelet (PLT) thrombi after focal or systemic vascular injury was examined. RESULTS: Transfected mice expressed physiological plasma levels of human scFv and developed sustained ADAMTS13 inhibition and accumulation of unprocessed UL-VWF multimers. Induced focal endothelial injury generated PLT thrombi extending well beyond the site of initial injury, and systemic endothelial injury induced thrombocytopenia, schistocyte formation, PLT thrombi, and death. CONCLUSIONS: These results demonstrate for the first time the ability of human recombinant monovalent anti-ADAMTS13 antibody fragments to recapitulate key pathologic features of untreated acquired TTP in vivo, validating their clinical significance and providing an animal model for testing novel targeted therapeutic approaches.


Asunto(s)
Proteína ADAMTS13/antagonistas & inhibidores , Autoanticuerpos , Púrpura Trombocitopénica Trombótica/inmunología , Púrpura Trombocitopénica Trombótica/terapia , Proteína ADAMTS13/inmunología , Animales , Autoanticuerpos/genética , Clonación Molecular , ADN Complementario/administración & dosificación , Humanos , Ratones , Modelos Animales , Terapia Molecular Dirigida/métodos , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/toxicidad , Factor de von Willebrand/metabolismo
12.
J Biol Chem ; 289(23): 16462-77, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24753245

RESUMEN

Monoclonal antibody F77 was previously raised against human prostate cancer cells and has been shown to recognize a carbohydrate antigen, but the carbohydrate sequence of the antigen was elusive. Here, we make multifaceted approaches to characterize F77 antigen, including binding analyses with the glycolipid extract of the prostate cancer cell line PC3, microarrays with sequence-defined glycan probes, and designer arrays from the O-glycome of an antigen-positive mucin, in conjunction with mass spectrometry. Our results reveal F77 antigen to be expressed on blood group H on a 6-linked branch of a poly-N-acetyllactosamine backbone. We show that mAb F77 can also bind to blood group A and B analogs but with lower intensities. We propose that the close association of F77 antigen with prostate cancers is a consequence of increased blood group H expression together with up-regulated branching enzymes. This is in contrast to other epithelial cancers that have up-regulated branching enzymes but diminished expression of H antigen. With knowledge of the structure and prevalence of F77 antigen in prostate cancer, the way is open to explore rationally its application as a biomarker to detect F77-positive circulating prostate cancer-derived glycoproteins and tumor cells.


Asunto(s)
Antígenos de Neoplasias/química , Mucinas/química , Neoplasias de la Próstata/inmunología , Secuencia de Carbohidratos , Humanos , Masculino , Datos de Secuencia Molecular
13.
Blood ; 120(20): 4134-42, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22966172

RESUMEN

Prevailing approaches to manage autoimmune thrombotic disorders, such as heparin-induced thrombocytopenia, antiphospholipid syndrome and thrombotic thrombocytopenic purpura, include immunosuppression and systemic anticoagulation, though neither provides optimal outcome for many patients. A different approach is suggested by the concurrence of autoantibodies and their antigenic targets in the absence of clinical disease, such as platelet factor 4 in heparin-induced thrombocytopenia and ß(2)-glycoprotein-I (ß(2)GPI) in antiphospholipid syndrome. The presence of autoantibodies in the absence of disease suggests that conformational changes or other alterations in endogenous protein autoantigens are required for recognition by pathogenic autoantibodies. In thrombotic thrombocytopenic purpura, the clinical impact of ADAMTS13 deficiency caused by autoantibodies likely depends on the balance between residual antigen, that is, enzyme activity, and demand imposed by local genesis of ultralarge multimers of von Willebrand factor. A corollary of these concepts is that disrupting platelet factor 4 and ß(2)GPI conformation (or ultralarge multimer of von Willebrand factor oligomerization or function) might provide a disease-targeted approach to prevent thrombosis without systemic anticoagulation or immunosuppression. Validation of this approach requires a deeper understanding of how seemingly normal host proteins become antigenic or undergo changes that increase antibody avidity, and how they can be altered to retain adaptive functions while shedding epitopes prone to elicit harmful autoimmunity.


Asunto(s)
Síndrome Antifosfolípido/terapia , Autoantígenos/inmunología , Terapia Molecular Dirigida , Púrpura Trombocitopénica Idiopática/terapia , Proteínas ADAM/química , Proteínas ADAM/genética , Proteínas ADAM/inmunología , Proteína ADAMTS13 , Especificidad de Anticuerpos , Antígenos de Plaqueta Humana/química , Antígenos de Plaqueta Humana/inmunología , Síndrome Antifosfolípido/inmunología , Autoanticuerpos/inmunología , Autoantígenos/química , Autoantígenos/efectos de los fármacos , Biopolímeros , Heparina/efectos adversos , Humanos , Infecciones/complicaciones , Modelos Moleculares , Factor Plaquetario 4/química , Factor Plaquetario 4/inmunología , Conformación Proteica , Púrpura Trombocitopénica Idiopática/inducido químicamente , Púrpura Trombocitopénica Idiopática/etiología , Púrpura Trombocitopénica Idiopática/inmunología , Vacunas/efectos adversos , beta 2 Glicoproteína I/química , beta 2 Glicoproteína I/inmunología , Factor de von Willebrand/química , Factor de von Willebrand/inmunología
14.
Am J Physiol Lung Cell Mol Physiol ; 304(4): L250-63, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23275625

RESUMEN

The receptor for advanced glycation end products (RAGE) is a multiligand pattern recognition receptor implicated in multiple disease states. Although RAGE is expressed on systemic vascular endothelium, the expression and function of RAGE on lung endothelium has not been studied. Utilizing in vitro (human) and in vivo (mouse) models, we established the presence of RAGE on lung endothelium. Because RAGE ligands can induce the expression of RAGE and stored red blood cells express the RAGE ligand N(ε)-carboxymethyl lysine, we investigated whether red blood cell (RBC) transfusion would augment RAGE expression on endothelium utilizing a syngeneic model of RBC transfusion. RBC transfusion not only increased lung endothelial RAGE expression but enhanced lung inflammation and endothelial activation, since lung high mobility group box 1 and vascular cell adhesion molecule 1 expression was elevated following transfusion. These effects were mediated by RAGE, since endothelial activation was absent in RBC-transfused RAGE knockout mice. Thus, RAGE is inducibly expressed on lung endothelium, and one functional consequence of RBC transfusion is increased RAGE expression and endothelial activation.


Asunto(s)
Endotelio Vascular/metabolismo , Eritrocitos/fisiología , Pulmón/metabolismo , Receptores Inmunológicos/fisiología , Animales , Células Endoteliales/fisiología , Transfusión de Eritrocitos , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/biosíntesis , Molécula 1 de Adhesión Celular Vascular/biosíntesis
15.
MAbs ; 15(1): 2287250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38047502

RESUMEN

PD-1 checkpoint inhibitors have revolutionized the treatment of patients with different cancer histologies including melanoma, renal cell carcinoma, and non-small cell lung carcinoma. However, only a subset of patients show a dramatic clinical response to treatment. Despite intense biomarker discovery efforts, no single robust, prognostic correlation has emerged as a valid outcome predictor. Immune competent, pet dogs develop spontaneous tumors that share similar features to human cancers including chromosome aberrations, molecular subtypes, immune signatures, tumor heterogeneity, metastatic behavior, and chemotherapeutic response. As such, they represent a valuable parallel patient population in which to investigate predictive biomarkers of checkpoint inhibition. However, the lack of a validated, non-immunogenic, canine anti-PD-1 antibody for pre-clinical use hinders this comparative approach and prevents potential clinical benefits of PD-1 blockade being realized in the veterinary clinic. To address this, fully canine single-chain variable fragments (scFvs) that bind canine (c)PD-1 were isolated from a comprehensive canine scFv phage display library. Lead candidates were identified that bound with high affinity to cPD-1 and inhibited its interaction with canine PD-L1 (cPD-L1). The lead scFv candidate re-formatted into a fully canine IgGD reversed the inhibitory effects of cPD-1:cPD-L1 interaction on canine chimeric antigen receptor (CAR) T cell function. In vivo administration showed no toxicity and revealed favorable pharmacokinetics for a reasonable dosing schedule. These results pave the way for clinical trials with anti-cPD-1 in canine cancer patients to investigate predictive biomarkers and combination regimens to inform human clinical trials and bring a promising checkpoint inhibitor into the veterinary armamentarium.


Asunto(s)
Melanoma , Investigación Biomédica Traslacional , Humanos , Perros , Animales , Receptor de Muerte Celular Programada 1 , Anticuerpos Monoclonales/uso terapéutico , Inhibidores de Puntos de Control Inmunológico , Antígeno B7-H1
16.
Blood Cancer Discov ; 4(2): 118-133, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413381

RESUMEN

We conducted a phase I clinical trial of anti-BCMA chimeric antigen receptor T cells (CART-BCMA) with or without anti-CD19 CAR T cells (huCART19) in multiple myeloma (MM) patients responding to third- or later-line therapy (phase A, N = 10) or high-risk patients responding to first-line therapy (phase B, N = 20), followed by early lenalidomide or pomalidomide maintenance. We observed no high-grade cytokine release syndrome (CRS) and only one instance of low-grade neurologic toxicity. Among 15 subjects with measurable disease, 10 exhibited partial response (PR) or better; among 26 subjects responding to prior therapy, 9 improved their response category and 4 converted to minimal residual disease (MRD)-negative complete response/stringent complete response. Early maintenance therapy was safe, feasible, and coincided in some patients with CAR T-cell reexpansion and late-onset, durable clinical response. Outcomes with CART-BCMA + huCART19 were similar to CART-BCMA alone. Collectively, our results demonstrate favorable safety, pharmacokinetics, and antimyeloma activity of dual-target CAR T-cell therapy in early lines of MM treatment. SIGNIFICANCE: CAR T cells in early lines of MM therapy could be safer and more effective than in the advanced setting, where prior studies have focused. We evaluated the safety, pharmacokinetics, and efficacy of CAR T cells in patients with low disease burden, responding to current therapy, combined with standard maintenance therapy. This article is highlighted in the In This Issue feature, p. 101.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Mieloma Múltiple/terapia , Receptores Quiméricos de Antígenos/uso terapéutico , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Lenalidomida/uso terapéutico , Antígenos CD19/uso terapéutico , Linfocitos T
17.
J Invest Dermatol ; 142(12): 3294-3303, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787400

RESUMEN

Despite the central role of IFN-γ in vitiligo pathogenesis, systemic IFN-γ neutralization is an impractical treatment option owing to strong immunosuppression. However, most patients with vitiligo present with <20% affected body surface area, which provides an opportunity for localized treatments that avoid systemic side effects. After identifying keratinocytes as key cells that amplify IFN-γ signaling during vitiligo, we hypothesized that tethering an IFN-γ‒neutralizing antibody to keratinocytes would limit anti‒IFN-γ effects on the treated skin for the localized treatment. To that end, we developed a bispecific antibody capable of blocking IFN-γ signaling while binding to desmoglein expressed by keratinocytes. We characterized the effect of the bispecific antibody in vitro, ex vivo, and in a mouse model of vitiligo. Single-photon emission computed tomography/computed tomography biodistribution and serum assays after local footpad injection revealed that the bispecific antibody had improved skin retention, faster elimination from the blood, and less systemic IFN-γ inhibition than the nontethered version. Furthermore, the bispecific antibody conferred localized protection almost exclusively to the treated footpad during vitiligo, which was not possible by local injection of the nontethered anti‒IFN-γ antibody. Thus, keratinocyte tethering proved effective while significantly diminishing the off-tissue effects of IFN-γ blockade, offering a safer treatment strategy for localized skin diseases, including vitiligo.


Asunto(s)
Productos Biológicos , Vitíligo , Ratones , Animales , Vitíligo/tratamiento farmacológico , Distribución Tisular , Queratinocitos/metabolismo , Piel/patología , Productos Biológicos/uso terapéutico
18.
J Immunol ; 183(9): 5615-21, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19843946

RESUMEN

In pemphigus foliaceus (PF), autoantibodies against desmoglein 1 (Dsg1) cause blisters. Using Ab phage display, we have cloned mAbs from a PF patient. These mAbs, like those from a previous patient, were directed against mature Dsg1 (matDsg1) on the cell surface of keratinocytes and precursor Dsg1 (preDsg1) in the cytoplasm. To determine whether individuals without pemphigus have B cell tolerance to Dsg1, we cloned mAbs from two patients with thrombotic thrombocytopenic purpura and a healthy person. We found mAbs against preDsg1, but not matDsg1. All but 1 of the 23 anti-preDsg1 mAbs from PF patients and those without PF used the VH3-09 (or closely related VH3-20) H chain gene, whereas no PF anti-matDsg1 used these genes. V(H) cDNA encoding anti-preDsg1 had significantly fewer somatic mutations than did anti-matDsg1 cDNA, consistent with chronic Ag-driven hypermutation of the latter compared with the former. These data indicate that individuals without PF do not have B cell tolerance to preDsg1 and that loss of tolerance to matDsg1 is not due to epitope shifting of anti-preDsg1 B cells (because of different V(H) gene usage). However, presentation of peptides from Dsg1 by preDsg1-specific B cells may be one step in developing autoimmunity in PF.


Asunto(s)
Autoanticuerpos/biosíntesis , Desmogleína 1/inmunología , Proteínas de la Membrana/aislamiento & purificación , Pénfigo/inmunología , Pénfigo/metabolismo , Precursores de Proteínas/inmunología , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/genética , Especificidad de Anticuerpos , Autoanticuerpos/genética , Clonación Molecular , Desmogleína 1/aislamiento & purificación , Humanos , Tolerancia Inmunológica , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Pénfigo/patología , Precursores de Proteínas/antagonistas & inhibidores , Precursores de Proteínas/aislamiento & purificación , Púrpura Trombocitopénica Trombótica/inmunología , Púrpura Trombocitopénica Trombótica/metabolismo
19.
J Thromb Haemost ; 19(8): 1888-1895, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33834592

RESUMEN

BACKGROUND: Immune thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal thrombotic microangiopathy, resulting from a severe deficiency of plasma ADAMTS-13 (A Disintegrin And Metalloproteinase with ThromboSpondin type 1 motif, member 13) activity. IgG-type autoantibodies are primarily responsible for the inhibition of plasma ADAMTS-13 activity. However, the mechanism underlying autoantibody-mediated inhibition is not fully understood. OBJECTIVE: The purpose of the present study is to determine the role of IgG autoantibodies against various carboxyl-terminal domains of ADAMTS-13 in regulating ADAMTS-13 activity and its inhibition. METHOD: Various human monoclonal antibodies isolated by phage display, recombinant protein expression and purification, and biochemical analyses were employed for the study. RESULTS: Our results demonstrate for the first time that a human monoclonal antibody fragment, the single chain fragment of the variable region (scFv) isolated from a patient with acute iTTP that binds the distal carboxyl-terminus of ADAMTS-13, is able to activate ADAMTS-13 and increase the proteolytic cleavage of a FRETS-VWF73 substrate; moreover, binding of such a human monoclonal antibody against the carboxyl-terminus of ADAMTS-13 to plasma ADAMTS-13 appears to modulate inhibition by another human monoclonal antibody (i.e., scFv4-20), also isolated from an iTTP patient, that targets the spacer domain of ADAMTS-13. These results provide new insights into our understanding of the pathogenesis of iTTP.


Asunto(s)
Púrpura Trombocitopénica Trombótica , Proteína ADAMTS13 , Anticuerpos Monoclonales , Autoanticuerpos , Humanos , Trombospondina 1
20.
MAbs ; 13(1): 2004638, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34856888

RESUMEN

The immune checkpoint inhibitor (ICI) ipilimumab has revolutionized the treatment of patients with different cancer histologies, including melanoma, renal cell carcinoma, and non-small cell lung carcinoma. However, only a subset of patients shows dramatic clinical responses to treatment. Despite intense biomarker discovery efforts linked to clinical trials using CTLA4 checkpoint blockade, no single prognostic correlate has emerged as a valid predictor of outcome. Client-owned, immune competent, pet dogs develop spontaneous tumors that exhibit similar features to human cancers, including shared chromosome aberrations, molecular subtypes, immune signatures, tumor heterogeneity, metastatic behavior, and response to chemotherapy. As such, they represent a valuable parallel patient population in which to investigate novel predictive biomarkers and rational therapeutic ICI combinations. However, the lack of validated, non-immunogenic, canine ICIs for preclinical use hinders this comparative approach. To address this, fully canine single-chain variable fragments (scFvs) that bind canine CTLA4 were isolated from a comprehensive canine scFv phage display library. A lead candidate for clinical development was selected based on its subnanomolar binding affinity to canine CTLA4 and its ability to prevent CTLA4 binding to CD80/CD86 and promote T cell proliferation and effector function. In vivo mouse studies revealed pharmacokinetics similar to isotype control IgG with no evidence of short-term adverse effects. This work paves the way for in vivo analysis of the first fully canine, anti-canine CTLA4 antibody to promote anti-tumor immunity in dogs with immune-responsive cancers and provide an important comparative tool to investigate correlative biomarkers of response and mechanisms of resistance to CTLA4 checkpoint inhibition.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antígeno CTLA-4 , Perros , Humanos , Ratones , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA