Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Org Inorg Au ; 4(3): 329-337, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38855335

RESUMEN

Molybdenum(III) complexes bearing pincer-type ligands are well-known catalysts for N2-to-NH3 reduction. We investigated herein the impact of an anionic PNP pincer-type ligand in a Mo(III) complex on the (electro)chemical N2 splitting ([LMoCl3]-, 1 -, LH = 2,6-bis((di-tert-butylphosphaneyl)methyl)-pyridin-4-one). The increased electron-donating properties of the anionic ligand should lead to a stronger degree of N2 activation. The catalyst is indeed active in N2-to-NH3 conversion utilizing the proton-coupled electron transfer reagent SmI2/ethylene glycol. The corresponding Mo(V) nitrido complex 2H exhibits similar catalytic activity as 1H and thus could represent a viable intermediate. The Mo(IV) nitrido complex 3 - is also accessible by electrochemical reduction of 1 - under a N2 atmosphere. IR- and UV/vis-SEC measurements suggest that N2 splitting occurs via formation of an "overreduced" but more stable [(L(N2)2Mo0)2µ-N2]2- dimer. In line with this, the yield in the nitrido complex increases with lower applied potentials.

2.
ChemSusChem ; 17(9): e202301518, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38214219

RESUMEN

A light-driven dual and ternary catalytic aza-Wacker protocol for the construction of 3-pyrrolines by partially disulfide-assisted selenium-π-acid multicatalysis is reported. A structurally diverse array of sulfonamides possessing homopolar mono-, di- and trisubstituted olefinic double bonds is selectively converted to the corresponding 3-pyrrolines in up to 95 % isolated yield and with good functional group tolerance. Advanced electrochemical mechanistic investigations of the protocol suggest a dual role of the disulfide co-catalyst. On the one hand, the disulfide serves as an electron hole shuttle between the excited photoredox catalyst and the selenium co-catalyst. On the other hand, the sulfur species engages in the final, product releasing step of the catalytic cycle by accelerating the ß-elimination of the selenium moiety, which was found in many cases to lead to considerably improved product yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA