Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(12): e3001730, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36469518

RESUMEN

The brain as a central regulator of stress integration determines what is threatening, stores memories, and regulates physiological adaptations across the aging trajectory. While sleep homeostasis seems to be linked to brain resilience, how age-associated changes intersect to adapt brain resilience to life history remains enigmatic. We here provide evidence that a brain-wide form of presynaptic active zone plasticity ("PreScale"), characterized by increases of active zone scaffold proteins and synaptic vesicle release factors, integrates resilience by coupling sleep, longevity, and memory during early aging of Drosophila. PreScale increased over the brain until mid-age, to then decreased again, and promoted the age-typical adaption of sleep patterns as well as extended longevity, while at the same time it reduced the ability of forming new memories. Genetic induction of PreScale also mimicked early aging-associated adaption of sleep patterns and the neuronal activity/excitability of sleep control neurons. Spermidine supplementation, previously shown to suppress early aging-associated PreScale, also attenuated the age-typical sleep pattern changes. Pharmacological induction of sleep for 2 days in mid-age flies also reset PreScale, restored memory formation, and rejuvenated sleep patterns. Our data suggest that early along the aging trajectory, PreScale acts as an acute, brain-wide form of presynaptic plasticity to steer trade-offs between longevity, sleep, and memory formation in a still plastic phase of early brain aging.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila melanogaster/genética , Sinapsis/fisiología , Envejecimiento/fisiología , Encéfalo/fisiología , Plasticidad Neuronal/fisiología
2.
EMBO Rep ; 24(11): e57758, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37680133

RESUMEN

Compartmentalization by membranes is a common feature of eukaryotic cells and serves to spatiotemporally confine biochemical reactions to control physiology. Membrane-bound organelles such as the endoplasmic reticulum (ER), the Golgi complex, endosomes and lysosomes, and the plasma membrane, continuously exchange material via vesicular carriers. In addition to vesicular trafficking entailing budding, fission, and fusion processes, organelles can form membrane contact sites (MCSs) that enable the nonvesicular exchange of lipids, ions, and metabolites, or the secretion of neurotransmitters via subsequent membrane fusion. Recent data suggest that biomolecule and information transfer via vesicular carriers and via MCSs share common organizational principles and are often mediated by proteins with intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) can assemble via low-affinity, multivalent interactions to facilitate membrane tethering, deformation, fission, or fusion. Here, we review our current understanding of how IDPs drive the formation of multivalent protein assemblies and protein condensates to orchestrate vesicular and nonvesicular transport with a special focus on presynaptic neurotransmission. We further discuss how dysfunction of IDPs causes disease and outline perspectives for future research.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Membrana Celular/metabolismo , Lisosomas/metabolismo
3.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862173

RESUMEN

The intricate molecular and structural sequences guiding the formation and consolidation of memories within neuronal circuits remain largely elusive. In this study, we investigate the roles of two pivotal presynaptic regulators, the small GTPase Rab3, enriched at synaptic vesicles, and the cell adhesion protein Neurexin-1, in the formation of distinct memory phases within the Drosophila mushroom body Kenyon cells. Our findings suggest that both proteins play crucial roles in memory-supporting processes within the presynaptic terminal, operating within distinct plasticity modules. These modules likely encompass remodeling and maturation of existing active zones (AZs), as well as the formation of new AZs.


Asunto(s)
Proteínas de Drosophila , Memoria , Cuerpos Pedunculados , Terminales Presinápticos , Proteínas de Unión al GTP rab3 , Animales , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/metabolismo , Terminales Presinápticos/fisiología , Terminales Presinápticos/metabolismo , Proteínas de Drosophila/metabolismo , Memoria/fisiología , Proteínas de Unión al GTP rab3/metabolismo , Proteínas de Unión al GTP rab3/genética , Proteínas del Tejido Nervioso/metabolismo , Drosophila , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiología
4.
PLoS Biol ; 19(6): e3001149, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34153028

RESUMEN

Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.


Asunto(s)
Fibras Musgosas del Hipocampo/metabolismo , Terminales Presinápticos/metabolismo , Animales , Colforsina/farmacología , Ácido Glutámico/metabolismo , Masculino , Ratones Endogámicos C57BL , Microscopía de Fluorescencia por Excitación Multifotónica , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/ultraestructura , Neurotransmisores/metabolismo , Terminales Presinápticos/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622791

RESUMEN

The cyclic adenosine monophosphate (cAMP)-dependent potentiation of neurotransmitter release is important for higher brain functions such as learning and memory. To reveal the underlying mechanisms, we applied paired pre- and postsynaptic recordings from hippocampal mossy fiber-CA3 synapses. Ca2+ uncaging experiments did not reveal changes in the intracellular Ca2+ sensitivity for transmitter release by cAMP, but suggested an increase in the local Ca2+ concentration at the release site, which was much lower than that of other synapses before potentiation. Total internal reflection fluorescence (TIRF) microscopy indicated a clear increase in the local Ca2+ concentration at the release site within 5 to 10 min, suggesting that the increase in local Ca2+ is explained by the simple mechanism of rapid Ca2+ channel accumulation. Consistently, two-dimensional time-gated stimulated emission depletion microscopy (gSTED) microscopy showed an increase in the P/Q-type Ca2+ channel cluster size near the release sites. Taken together, this study suggests a potential mechanism for the cAMP-dependent increase in transmission at hippocampal mossy fiber-CA3 synapses, namely an accumulation of active zone Ca2+ channels.


Asunto(s)
Canales de Calcio/metabolismo , AMP Cíclico/metabolismo , Fibras Musgosas del Hipocampo/fisiología , Transmisión Sináptica , Calcio/metabolismo , Microscopía Fluorescente , Plasticidad Neuronal , Técnicas de Placa-Clamp
6.
Development ; 147(24)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33234716

RESUMEN

The balance among different subtypes of glutamate receptors (GluRs) is crucial for synaptic function and plasticity at excitatory synapses. However, the mechanisms balancing synaptic GluR subtypes remain unclear. Herein, we show that the two subtypes of GluRs (A and B) expressed at Drosophila neuromuscular junction synapses mutually antagonize each other in terms of their relative synaptic levels and affect subsynaptic localization of each other, as shown by super-resolution microscopy. Upon temperature shift-induced neuromuscular junction plasticity, GluR subtype A increased but subtype B decreased with a timecourse of hours. Inhibition of the activity of GluR subtype A led to imbalance of GluR subtypes towards more GluRIIA. To gain a better understanding of the signalling pathways underlying the balance of GluR subtypes, we performed an RNA interference screen of candidate genes and found that postsynaptic-specific knockdown of dunce, which encodes cAMP phosphodiesterase, increased levels of GluR subtype A but decreased subtype B. Furthermore, bidirectional alterations of postsynaptic cAMP signalling resulted in the same antagonistic regulation of the two GluR subtypes. Our findings thus identify a direct role of postsynaptic cAMP signalling in control of the plasticity-related balance of GluRs.


Asunto(s)
Proteínas de Drosophila/genética , Plasticidad Neuronal/genética , Receptores Ionotrópicos de Glutamato/genética , Sinapsis/genética , Animales , AMP Cíclico/genética , Drosophila melanogaster/genética , Unión Neuromuscular/genética , Unión Neuromuscular/crecimiento & desarrollo , Receptores de Glutamato/genética , Transducción de Señal/genética , Transmisión Sináptica/genética
7.
J Neuroinflammation ; 19(1): 172, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780157

RESUMEN

BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Espermidina , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Espermidina/farmacología , Espermidina/uso terapéutico
8.
J Cell Sci ; 132(6)2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30745339

RESUMEN

Protein scaffolds at presynaptic active zone membranes control information transfer at synapses. For scaffold biogenesis and maintenance, scaffold components must be safely transported along axons. A spectrum of kinases has been suggested to control transport of scaffold components, but direct kinase-substrate relationships and operational principles steering phosphorylation-dependent active zone protein transport are presently unknown. Here, we show that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly elongated Bruchpilot (BRP) active zone protein is crucial for ordered active zone precursor transport in Drosophila Point mutations that block SRPK79D kinase-mediated phosphorylation of the BRP N-terminus interfered with axonal transport, leading to BRP-positive axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates formed only in the presence of non-phosphorylatable BRP isoforms containing the SRPK79D-targeted N-terminal stretch. We assume that specific active zone proteins are pre-assembled in transport packages and are thus co-transported as functional scaffold building blocks. Our results suggest that transient post-translational modification of a discrete unstructured domain of the master scaffold component BRP blocks oligomerization of these building blocks during their long-range transport.


Asunto(s)
Transporte Axonal/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Fosforilación , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo
9.
J Neurogenet ; 34(1): 92-105, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31965876

RESUMEN

Amyloid precursor protein (APP), the precursor of amyloid beta peptide, plays a central role in Alzheimer's disease (AD), a pathology characterized by memory decline and synaptic loss upon aging. Understanding the physiological role of APP is fundamental in deciphering the progression of AD, and several studies suggest a synaptic function via protein-protein interactions. Nevertheless, it remains unclear whether and how these interactions contribute to memory. In Drosophila, we previously showed that APP-like (APPL), the fly APP homolog, is required for aversive associative memory in the olfactory memory center, the mushroom body (MB). In the present study, we show that APPL is required for appetitive long-term memory (LTM), another form of associative memory, in a specific neuronal subpopulation of the MB, the α'/ß' Kenyon cells. Using a biochemical approach, we identify the synaptic MAGUK (membrane-associated guanylate kinase) proteins X11, CASK, Dlgh2 and Dlgh4 as interactants of the APP intracellular domain (AICD). Next, we show that the Drosophila homologs CASK and Dlg are also required for appetitive LTM in the α'/ß' neurons. Finally, using a double RNAi approach, we demonstrate that genetic interactions between APPL and CASK, as well as between APPL and Dlg, are critical for appetitive LTM. In summary, our results suggest that APPL contributes to associative long-term memory through its interactions with the main synaptic scaffolding proteins CASK and Dlg. This function should be conserved across species.


Asunto(s)
Conducta Apetitiva/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Memoria a Largo Plazo/fisiología , Cuerpos Pedunculados/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/fisiología
10.
J Neurogenet ; 34(1): 106-114, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31980003

RESUMEN

The cellular analysis of mushroom body (MB)-dependent memory forming processes is far advanced, whereas, the molecular and physiological understanding of their synaptic basis lags behind. Recent analysis of the Drosophila olfactory system showed that Unc13A, a member of the M(Unc13) release factor family, promotes a phasic, high release probability component, while Unc13B supports a slower tonic release component, reflecting their different nanoscopic positioning within individual active zones. We here use STED super-resolution microscopy of MB lobe synapses to show that Unc13A clusters closer to the active zone centre than Unc13B. Unc13A specifically supported phasic transmission and short-term plasticity of Kenyon cell:output neuron synapses, measured by combining electrophysiological recordings of output neurons with optogenetic stimulation. Knockdown of unc13A within Kenyon cells provoked drastic deficits of olfactory aversive short-term and anaesthesia-sensitive middle-term memory. Knockdown of unc13B provoked milder memory deficits. Thus, a low frequency domain transmission component is probably crucial for the proper representation of memory-associated activity patterns, consistent with sparse Kenyon cell activation during memory acquisition and retrieval. Notably, Unc13A/B ratios appeared highly diversified across MB lobes, leaving room for an interplay of activity components in memory encoding and retrieval.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Memoria/fisiología , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Percepción Olfatoria/fisiología , Animales , Drosophila , Femenino , Isoformas de Proteínas , Sinapsis/metabolismo
11.
PLoS Biol ; 14(9): e1002563, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27684064

RESUMEN

Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.

12.
Proc Natl Acad Sci U S A ; 113(41): 11615-11620, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671655

RESUMEN

The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2-deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in CaV2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.


Asunto(s)
Canales de Calcio/metabolismo , Hipocampo/metabolismo , Sinapsis/metabolismo , Potenciales de Acción , Animales , Calcio/metabolismo , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Eliminación de Gen , Expresión Génica , Marcación de Gen , Sitios Genéticos , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fenotipo , Transporte de Proteínas , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo
13.
Nat Methods ; 12(9): 827-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26214129

RESUMEN

Electro-optical scanning (>1,000 frames/s) with pixel dwell times on the order of the lifetime of the fluorescent molecular state renders stimulated emission depletion (STED) nanoscopy temporally stochastic. Photon detection from a molecule occurs stochastically in one of several scanning frames, and the spatial origin of the photon is known with subdiffraction precision. Images are built up by binning consecutive frames, making the time resolution freely adjustable. We demonstrated nanoscopy of vesicle motions in living Drosophila larvae and the cellular uptake of viral particles with 5- to 10-ms temporal resolution.


Asunto(s)
Aumento de la Imagen/instrumentación , Sistemas Microelectromecánicos/instrumentación , Microscopía Fluorescente/instrumentación , Imagen Molecular/instrumentación , Nanotecnología/instrumentación , Fotometría/instrumentación , Interpretación Estadística de Datos , Diseño de Equipo , Análisis de Falla de Equipo , Procesos Estocásticos
14.
EMBO J ; 32(23): 3041-54, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24129513

RESUMEN

Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.


Asunto(s)
Apoptosis , Endodesoxirribonucleasas/metabolismo , Neuroblastoma/patología , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Sustancia Negra/patología , alfa-Sinucleína/metabolismo , Anciano , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Daño del ADN/genética , Dopamina/farmacología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Endodesoxirribonucleasas/genética , Humanos , Immunoblotting , Técnicas para Inmunoenzimas , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuronas/citología , Estrés Oxidativo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sustancia Negra/metabolismo , Células Tumorales Cultivadas , alfa-Sinucleína/genética
15.
Nature ; 536(7615): 151-2, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27462816
16.
Nat Rev Neurosci ; 12(3): 127-38, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21304549

RESUMEN

Mechanisms that ensure robust long-term performance of synaptic transmission over a wide range of activity are crucial for the integrity of neuronal networks, for processing sensory information and for the ability to learn and store memories. Recent experiments have revealed that such robust performance requires a tight coupling between exocytic vesicle fusion at defined release sites and endocytic retrieval of synaptic vesicle membranes. Distinct presynaptic scaffolding proteins are essential for fulfilling this requirement, providing either ultrastructural coordination or acting as signalling hubs.


Asunto(s)
Endocitosis/fisiología , Exocitosis/fisiología , Regiones de Fijación a la Matriz/fisiología , Sinapsis/fisiología , Animales , Humanos , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Vesículas Sinápticas/ultraestructura
17.
PLoS Comput Biol ; 11(9): e1004407, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26367029

RESUMEN

Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release.


Asunto(s)
Modelos Biológicos , Sinapsis/química , Sinapsis/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Animales , Biología Computacional , Drosophila , Procesamiento de Imagen Asistido por Computador , Larva/química , Larva/metabolismo , Microscopía
18.
J Neurosci ; 34(25): 8474-87, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24948803

RESUMEN

During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3ß kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot).


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/fisiología , Proteínas Activadoras de GTPasa/fisiología , Fosfoproteínas Fosfatasas/fisiología , Fosfoproteínas/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Axones/química , Coristoma/metabolismo , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular , Estabilidad Proteica , Sinapsis/química
19.
Am J Hum Genet ; 90(5): 847-55, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22541559

RESUMEN

With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227(∗)] and c.1114C>T [p.Gln372(∗)], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs(∗)192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development.


Asunto(s)
Codón sin Sentido , Genes Recesivos , Discapacidad Intelectual/genética , Metiltransferasas/genética , Adolescente , Adulto , Animales , Niño , Clonación Molecular , Consanguinidad , Drosophila/genética , Exones , Femenino , Ligamiento Genético , Genotipo , Homocigoto , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Metiltransferasas/metabolismo , Persona de Mediana Edad , Linaje , Fenotipo , Adulto Joven
20.
J Cell Sci ; 125(Pt 15): 3621-9, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22505608

RESUMEN

Synapse transmission depends on the precise structural and functional assembly between pre- and postsynaptic elements. This tightly regulated interaction has been thoroughly characterised in vivo in the Drosophila glutamatergic larval neuromuscular junction (NMJ) synapse, a suitable model to explore synapse formation, dynamics and plasticity. Previous findings have demonstrated that presynaptic upregulation of phosphoinositide 3-kinase (PI3K) increases synapse number, generating new functional contacts and eliciting changes in behaviour. Here, we show that genetically driven overexpression of PI3K in the presynaptic element also leads to a correlated increase in the levels of glutamate receptor (GluRII) subunits and the number of postsynaptic densities (PSDs), without altering GluRII formation and assembly dynamics. In addition to GluRIIs, presynaptic PI3K activity also modifies the expression of the postsynaptic protein Discs large (Dlg). Remarkably, PI3K specifically overexpressed in the final larval stages is sufficient for the formation of NMJ synapses. No differences in the number of synapses and PSDs were detected when PI3K was selectively expressed in the postsynaptic compartment. Taken together, these results demonstrate that PI3K-dependent synaptogenesis plays an instructive role in PSD formation and growth from the presynaptic side.


Asunto(s)
Drosophila melanogaster/metabolismo , Unión Neuromuscular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Glutamato/biosíntesis , Animales , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Activación Enzimática , Inmunohistoquímica , Unión Neuromuscular/enzimología , Fosfatidilinositol 3-Quinasas/biosíntesis , Fosfatidilinositol 3-Quinasas/genética , Receptores de Glutamato/metabolismo , Sinapsis/enzimología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA