Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Planta ; 244(4): 789-804, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27165311

RESUMEN

MAIN CONCLUSION: Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice. For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.


Asunto(s)
Proteínas Bacterianas/genética , Resistencia a los Insecticidas/genética , Oryza/genética , Enfermedades de las Plantas/genética , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Western Blotting , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos , Control de Insectos/métodos , Insectos/fisiología , Insecticidas/metabolismo , Oryza/parasitología , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribulosa-Bifosfato Carboxilasa/genética
2.
Planta ; 241(6): 1463-79, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25754232

RESUMEN

MAIN CONCLUSION: Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.


Asunto(s)
Citoplasma/genética , Proteínas Mitocondriales/genética , Oryza/genética , Oryza/fisiología , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Edición de ARN , Núcleo Celular/metabolismo , Regulación hacia Abajo , Transporte de Electrón , Fertilidad/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/genética , Factores de Tiempo , Transformación Genética
3.
Front Plant Sci ; 13: 929478, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618616

RESUMEN

Bacterial diseases cause severe losses in the production and revenue of many fruit crops, including citrus and apple. Huanglongbing (HLB) in citrus and fire blight in apple are two deadly diseases without any cure. In this article, we introduce a novel therapy for HLB and fire blight by enhancing the innate immunity of the host plants. Specifically, we constructed in silico a library of chimeras containing two different host peptides with observed or predicted antibacterial activity. Subsequently, we performed bactericidal and toxicity tests in vitro to select a few non-toxic chimeras with high antibacterial activity. Finally, we conducted ex planta studies to show that not only do the chimeras clear the causative bacteria from citrus leaves with HLB and from apple leaves with fire blight but they also augment the host's innate immunity during infection. This platform technology can be extended to design host-derived chimeras against multiple pathogenic bacteria that cause diseases in plants and animals of agricultural importance and in humans.

4.
Gene Expr Patterns ; 27: 128-134, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247850

RESUMEN

Grass pea (Lathyrus sativus L.) is a worldwide popular pulse crop especially for its protein rich seeds with least production cost. However, the use of the crop became controversial due to the presence of non-protein amino acid, ß-N-oxalyl-L-α, ß-diaminopropionic acid (ß-ODAP) in its seed and leaf, which is known as the principle neurotoxin to cause neurolathyrism (a motor neurodegenerative disease of humans and animals) during prolonged consumption as regular diet. Till date, the knowledge on ß-ODAP biosynthesis in Lathyrus sp. is limited only to a small part of the complex bio-chemical steps involved including a few known sulfur-containing enzymes (viz. cysteine synthase, ODAP synthase etc.). In Lathyrus sativus, biosynthesis of ß-ODAP varies differentially in a tissue-specific manner as well as in response to several environmental stresses viz. zinc deficiency, iron over-exposure, moisture stress etc. In the present study, a novel cysteine synthase gene (LsCSase) from Lathyrus sativus L was identified and characterized through bioinformatics approaches. The bioinformatic analysis revealed that LsCSase showed maximum similarity with the O-acetyl serine (thiol) lyase of Medicago truncatula with respect to several significant sequence-specific conserved motifs (cysK, CBS like, ADH_zinc_N, PALP), sub-cellular localization (chloroplast or cytoplasm) etc., similar to other members of cysteine synthase protein family. Moreover, the tissue-specific regulation of the LsCSase as well as its transcriptional activation under certain previously reported stressed conditions (low Zn+2-high Fe+2, PEG induced osmotic stress) were also documented through quantitative real-time PCR analyses, suggesting a possible link between the LsCSase gene activation and ß-ODAP biosynthesis to manage external stresses in grass pea. This preliminary study offers a probable way towards the development of less toxic consumer-safe grass pea by down-regulation or deactivation of such gene/s (cysteine synthase) through genetic manipulations.


Asunto(s)
Cisteína Sintasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Lathyrus/enzimología , Semillas/enzimología , Secuencia de Aminoácidos , Simulación por Computador , Cisteína Sintasa/genética , Lathyrus/genética , Lathyrus/crecimiento & desarrollo , Especificidad de Órganos , Semillas/genética , Semillas/crecimiento & desarrollo , Homología de Secuencia , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA