Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Platelets ; 35(1): 2313362, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38380806

RESUMEN

Coagulation disturbances are major contributors to COVID-19 pathogenicity, but limited data exist on the involvement of extracellular vesicles (EVs) and residual cells (RCs). Fifty hospitalized COVID-19 patients stratified by their D-dimer levels into high (>1.5 mg/L, n = 15) or low (≤1.5 mg/l, n = 35) and 10 healthy controls were assessed for medium-sized EVs (mEVs; 200-1000 nm) and large EVs/RCs (1000-4000 nm) by high sensitivity flow cytometry. EVs were analyzed for CD61, CD235a, CD45, and CD31, commonly used to detect platelets, red blood cells, leukocytes or endothelial cells, respectively, whilst phosphatidyl serine EVs/RCs were detected by lactadherin-binding implicating procoagulant catalytic surface. Small EV detection (sEVs; 50-200 nm) and CD41a (platelet integrin) colocalization with general EV markers CD9, CD63, and CD81 were performed by single particle interferometric reflectance imaging sensor. Patients with increased D-dimer exhibited the highest number of RCs and sEVs irrespective of cell origin (p < .05). Platelet activation, reflected by increased CD61+ and lactadherin+ mEV and RC levels, associated with coagulation disturbances. Patients with low D-dimer could be discriminated from controls by tetraspanin signatures of the CD41a+ sEVs, suggesting the changes in the circulating platelet sEV subpopulations may offer added prognostic value during COVID progression.


What is the context? Coronavirus disease 19 (COVID-19) frequently leads to blood clotting disturbances, including thromboses.Particles smaller than cells, extracellular vesicles (EVs), and residual cells (RCs) affect blood clotting, but data on their role and diagnostic utility in COVID-19 are sparse.What is new? In this study, we assessed 50 hospitalized COVID-19 patients and 10 healthy controls for their different EV subpopulations and residual cells (50­4000 nm).Blood clotting marker D-dimer, which is elevated in severe COVID-19 infection, was used to characterize disease severity and stratify the patient subgroups. Fifteen patients (30%) with high D-dimer (>1.5 mg/L) were compared to controls, and 35 patients with lower D-dimer (≤1.5 mg/mL).The most topical state-of-the-art methods for detection of EV subpopulations, that is, high sensitivity flow cytometry (hsFCM) and single particle interferometric reflectance imaging sensor (SP-IRIS), were used with markers indicative of platelet, red blood cell, leukocyte or endothelial cells. The subpopulations differentiated by platelet and tetraspanin signatures by hsFCM and SP-IRIS, respectively.The main findings are Patients with high D-dimer systematically exhibited the highest number of platelet EVs in all subpopulations (p < .05).Small EVs subpopulations (differentiated by the tetraspanin signatures) could discriminate patients with low D-dimer (p < .001) from healthy controls.Differences between the two D-dimer groups were seen in the platelet-derived (large and medium EVs and RCs), RBC-derived mEVs and l EVs and RCs, and lactadherin-positive large EVs and RCs (p < .05).What is the impact? Platelet activation, reflected by increased EVs was associated with blood clotting disturbances. Small EVs signatures revealed changes in the EV subpopulations in association with blood clotting during COVID-19. Such signatures may enable identification of severely ill patients before the increase in coagulation is evident by coagulation parameters, for example, by high D-dimer.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , Células Endoteliales , Plaquetas , Activación Plaquetaria
2.
Cell Mol Life Sci ; 77(20): 4093-4115, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31820036

RESUMEN

Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Asunto(s)
Vesículas Extracelulares/genética , Proteínas Hedgehog/genética , Hialuronano Sintasas/genética , Melanoma/genética , Proteínas Proto-Oncogénicas c-myc/genética , Regulación hacia Arriba/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Receptores de Hialuranos/genética , Transducción de Señal/genética
3.
Platelets ; 31(1): 26-32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30585111

RESUMEN

Activated platelets contribute to thrombosis and inflammation by the release of extracellular vesicles (EVs) exposing P-selectin, phosphatidylserine (PS) and fibrinogen. P2Y12 receptor antagonists are routinely administered to inhibit platelet activation in patients after acute myocardial infarction (AMI), being a combined antithrombotic and anti-inflammatory therapy. The more potent P2Y12 antagonist ticagrelor improves cardiovascular outcome in patients after AMI compared to the less potent clopidogrel, suggesting that greater inhibition of platelet aggregation is associated with better prognosis. The effect of ticagrelor and clopidogrel on the release of EVs from platelets and other P2Y12-exposing cells is unknown. This study compares the effects of ticagrelor and clopidogrel on (1) the concentrations of EVs from activated platelets (primary end point), (2) the concentrations of EVs exposing fibrinogen, exposing PS, from leukocytes and from endothelial cells (secondary end points) and (3) the procoagulant activity of plasma EVs (tertiary end points) in 60 consecutive AMI patients. After the percutaneous coronary intervention, patients will be randomized to antiplatelet therapy with ticagrelor (study group) or clopidogrel (control group). Blood will be collected from patients at randomization, 48 hours after randomization and 6 months following the index hospitalization. In addition, 30 age- and gender-matched healthy volunteers will be enrolled in the study to investigate the physiological concentrations and procoagulant activity of EVs using recently standardized protocols and EV-dedicated flow cytometry. Concentrations of EVs will be determined by flow cytometry. Procoagulant activity of EVs will be determined by fibrin generation test. The compliance and response to antiplatelet therapy will be assessed by impedance aggregometry. We expect that plasma from patients treated with ticagrelor (1) contains lower concentrations of EVs from activated platelets, exposing fibrinogen, exposing PS, from leukocytes and from endothelial cells and (2) has lower procoagulant activity, when compared to patients treated with clopidogrel. Antiplatelet therapy effect on EVs may identify a new mechanism of action of ticagrelor, as well as create a basis for future studies to investigate whether lower EV concentrations are associated with improved clinical outcomes in patients treated with P2Y12 antagonists.


Asunto(s)
Protocolos Clínicos , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Inhibidores de Agregación Plaquetaria/administración & dosificación , Trombosis/etiología , Trombosis/prevención & control , Biomarcadores , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Femenino , Humanos , Masculino , Infarto del Miocardio/terapia , Intervención Coronaria Percutánea , Activación Plaquetaria/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2Y/administración & dosificación
4.
Circ Res ; 120(10): 1632-1648, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28495994

RESUMEN

Owing to the relationship between extracellular vesicles (EVs) and physiological and pathological conditions, the interest in EVs is exponentially growing. EVs hold high hopes for novel diagnostic and translational discoveries. This review provides an expert-based update of recent advances in the methods to study EVs and summarizes currently accepted considerations and recommendations from sample collection to isolation, detection, and characterization of EVs. Common misconceptions and methodological pitfalls are highlighted. Although EVs are found in all body fluids, in this review, we will focus on EVs from human blood, not only our most complex but also the most interesting body fluid for cardiovascular research.


Asunto(s)
Recolección de Muestras de Sangre/métodos , Recolección de Muestras de Sangre/normas , Vesículas Extracelulares/metabolismo , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Exosomas/metabolismo , Citometría de Flujo/métodos , Humanos
5.
Transfus Med Hemother ; 46(4): 267-275, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31700509

RESUMEN

Novel analytical measures are needed to accurately monitor the properties of platelet concentrates (PCs). Since activated platelets produce platelet-derived extracellular vesicles (EVs), analyzing EVs of PCs may provide additional information about the condition of platelets. The prospect of using EVs as an auxiliary measure of platelet activation state was investigated by examining the effect of platelet additive solutions (PASs) on EV formation and platelet activation during PC storage. The time-dependent activation of platelets in PCs with PAS-B or with the further developed PAS-E was compared by measuring the exposure of CD62P by flow cytometry and the content of soluble glycoprotein V (sGPV) of PCs by an immunoassay. Changes in the concentration and size distribution of EVs were determined using nanoparticle tracking analysis. A time-dependent increase in platelet activation in PCs was demonstrated by increased CD62P ex-posure, sGPV content, and EV concentration. Using these strongly correlating parameters, PAS-B platelets were shown to be more activated compared to PAS-E platelets. Since the EV concentration correlated well with the established platelet activation markers CD62P and sGPV, it could potentially be used as a complementary parameter for platelet activation for PCs. More detailed characterization of the resulting EVs could help to understand how the PC components contribute the functional effects of transfused PCs.

6.
Artículo en Inglés | MEDLINE | ID: mdl-28965917

RESUMEN

Red blood cells (RBCs) are stored up to 35-42days at 2-6°C in blood banks. During storage, the RBC membrane is challenged by energy depletion, decreasing pH, altered cation homeostasis, and oxidative stress, leading to several biochemical and morphological changes in RBCs and to shedding of extracellular vesicles (EVs) into the storage medium. These changes are collectively known as RBC storage lesions. EVs accumulate in stored RBC concentrates and are, thus, transfused into patients. The potency of EVs as bioactive effectors is largely acknowledged, and EVs in RBC concentrates are suspected to mediate some adverse effects of transfusion. Several studies have shown accumulation of lipid raft-associated proteins in RBC EVs during storage, whereas a comprehensive phospholipidomic study on RBCs and corresponding EVs during the clinical storage period is lacking. Our mass spectrometric and chromatographic study shows that RBCs maintain their major phospholipid (PL) content well during storage despite abundant vesiculation. The phospholipidomes were largely similar between RBCs and EVs. No accumulation of raft lipids in EVs was seen, suggesting that the primary mechanism of RBC vesiculation during storage might not be raft -based. Nonetheless, a slight tendency of EV PLs for shorter acyl chains was observed.


Asunto(s)
Conservación de la Sangre , Membrana Eritrocítica/química , Eritrocitos/química , Vesículas Extracelulares/química , Fosfolípidos/análisis , Conservación de la Sangre/métodos , Conservación de la Sangre/normas , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Fosfolípidos/metabolismo , Embalaje de Productos/normas , Control de Calidad
7.
Stem Cells ; 34(3): 781-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26731338

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39. In this study, we demonstrate that adenosine is actively produced from adenosine 5'-monophosphate (AMP) by CD73 on MSCs and MSC-derived extracellular vesicles (EVs). Our results indicate that although MSCs express CD39 at low level and it colocalizes with CD73 in bulge areas of membranes, the most efficient adenosine production from adenosine 5'-triphosphate (ATP) requires co-operation of MSCs and activated T cells. Highly CD39 expressing activated T cells produce AMP from ATP and MSCs produce adenosine from AMP via CD73 activity. Furthermore, adenosinergic signaling plays a role in suppression of T cell proliferation in vitro. In conclusion, this study shows that adenosinergic signaling is an important immunoregulatory mechanism of MSCs, especially in situations where ATP is present in the extracellular environment, like in tissue injury. An efficient production of immunosuppressive adenosine is dependent on the concerted action of CD39-positive immune cells with CD73-positive cells such as MSCs or their EVs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proliferación Celular/genética , Terapia de Inmunosupresión , Células Madre Mesenquimatosas/inmunología , 5'-Nucleotidasa/genética , Adenosina/biosíntesis , Adenosina Monofosfato/metabolismo , Animales , Antígenos CD/genética , Apirasa/genética , Vesículas Extracelulares/inmunología , Proteínas Ligadas a GPI/genética , Humanos , Tolerancia Inmunológica/genética , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Células Madre Mesenquimatosas/metabolismo
8.
BMC Cancer ; 17(1): 92, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28143451

RESUMEN

BACKGROUND: Multiple types of extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs), are released by all cells constituting part of the cellular EV secretome. The bioactive cargo of EVs can be shuffled between cells and consists of lipids, metabolites, proteins, and nucleic acids, including multiple RNA species from non-coding RNAs to messenger RNAs (mRNAs). In this study, we hypothesized that the mRNA cargo of EVs could differ based on the EV cellular origin and subpopulation analyzed. METHODS: We isolated MVs and EXOs from PC-3 and LNCaP prostate cancer cells by differential centrifugation and compared them to EVs derived from the benign PNT2 prostate cells. The relative mRNA levels of 84 prostate cancer-related genes were investigated and validated using quantitative reverse transcription PCR arrays. RESULTS: Based on the mRNA abundance, MVs rather than EXOs were enriched in the analyzed transcripts, providing a snapshot of the tumor transcriptome. LNCaP MVs specifically contained significantly increased mRNA levels of NK3 Homeobox 1 (NKX3-1), transmembrane protease serine 2 (TMPRSS2), and tumor protein 53 (TP53) genes, whereas PC-3 MVs carried increased mRNA levels of several genes including, caveolin-2 (CAV2), glutathione S-transferase pi 1 (GSTP1), pescadillo ribosomal biogenesis factor 1 (PES1), calmodulin regulated spectrin associated protein 1 (CAMSAP1), zinc-finger protein 185 (ZNF185), and others compared to PNT2 MVs. Additionally, ETS variant 1 (ETV1) and fatty acid synthase (FASN) mRNAs identified in LNCaP- and PC-3- derived MVs highly correlated with prostate cancer progression. CONCLUSIONS: Our study provides new understandings of the variability of the mRNA cargo of MVs and EXOs from different cell lines despite same cancer origin, which is essential to better understand the the proportion of the cell transcriptome that can be detected within EVs and to evaluate their role in disease diagnosis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias de la Próstata/metabolismo , ARN Mensajero/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Humanos , Masculino , Próstata , ARN Mensajero/genética , Transcriptoma
9.
PLoS Biol ; 10(12): e1001450, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23271954

RESUMEN

Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.


Asunto(s)
Bases de Datos como Asunto , Exosomas/metabolismo , Espacio Extracelular/metabolismo , Investigación , Apoptosis
10.
Prostate ; 74(14): 1379-90, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25111183

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS: EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS: We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. CONCLUSIONS: EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics.


Asunto(s)
Apoptosis/genética , ADN de Neoplasias/metabolismo , Exosomas/genética , Neoplasias de la Próstata/genética , Estudios de Casos y Controles , Línea Celular Tumoral , ADN de Neoplasias/genética , Exosomas/metabolismo , Genes p53 , Humanos , Masculino , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
11.
J Extracell Vesicles ; 13(1): e12400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193375

RESUMEN

Blood is the most commonly used body fluid for obtaining and studying extracellular vesicles (EVs). While blood is a standard choice for clinical analysis, using blood as a source of EVs introduces multiple layers of complexity. At the Blood Extracellular Vesicle Workshop organized by the International Society for Extracellular Vesicles in Helsinki (2022), it became evident that beginner researchers lack trustworthy information on how to initiate their research and avoid common pitfalls. This educational guide explains the composition and frequently used terminology of blood, provides guidelines for blood collection, and the preparation of plasma and serum. It also introduces the basic principles of isolating and detecting blood EVs while considering blood-related factors. The goal of this guide is to assist beginners by offering a concise and evidence-based introduction to the current knowledge and available resources to study blood EVs.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Humanos , Plasma
12.
Arthritis Res Ther ; 26(1): 33, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254142

RESUMEN

BACKGROUND: Emerging evidence suggests that extracellular vesicles (EVs) can play roles in inflammatory processes and joint degradation in primary osteoarthritis (OA), a common age-associated joint disease. EV subpopulations express tetraspanins and platelet markers that may reflect OA pathogenesis. The present study investigated the associations between these EV surface markers and articular cartilage degradation, subjectively and objectively assessed pain, and functional limitations in primary knee OA (KOA). METHODS: Serum EVs were determined by high-sensitivity flow cytometry (large CD61+ EVs) and single particle interferometric reflectance imaging sensor (small CD41+, CD63+, CD81+, and CD9+ EVs) from end-stage KOA patients and controls (n = 8 per group). Knee pain and physical functions were assessed with several health- and pain-related questionnaires, established measurements of physical medicine, and neuromuscular examination. The obtained data were analyzed using supervised and unsupervised univariate and multivariate models. RESULTS: With the combined dataset of cartilage thickness, knee function, pain, sensation, and EV molecular signatures, we identified highly correlated groups of variables and found several EV markers that were statistically significant predictors of pain, physical limitations, and other aspects of well-being for KOA patients, for instance CD41+/CD63+/CD9+ small EVs associated with the range of motion of the knee, physical performance, and pain sensitivity. CONCLUSIONS: Particular serum EV subpopulations showed clear associations with KOA pain and functional limitations, suggesting that their implications in OA pathophysiology warrant further study.


Asunto(s)
Vesículas Extracelulares , Osteoartritis de la Rodilla , Humanos , Percepción del Dolor , Dolor , Articulación de la Rodilla
13.
Eur J Cell Biol ; 102(2): 151311, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36963245

RESUMEN

Platelet extracellular vesicles (PEVs) generated upon platelet activation may play a role in inflammatory pathologies such as atherosclerosis. Oxidized low-density lipoprotein (oxLDL), a well-known contributor to atherogenesis, activates platelets and presensitizes them for activation by other agonists. We studied the effect of oxLDL on the secretion, composition, and inflammatory functions of PEVs using contemporary EV analytics. Platelets were activated by co-stimulation with thrombin (T) and collagen (C) ± oxLDL and characterized by high-resolution flow cytometry, nanoparticle tracking analysis, proximity extension assay, western blot, and electron microscopy. The effect of PEVs on macrophage differentiation and functionality was examined by analyzing macrophage surface markers, cytokine secretion, and transcriptome. OxLDL upregulated TC-induced formation of CD61+, P-selectin+ and phosphatidylserine+ PEVs. Blocking the scavenger receptor CD36 significantly suppressed the oxLDL+TC-induced PEV formation, and HDL caused a slight but detectable suppression. The inflammatory protein cargo differed between the PEVs from stimulated and unstimulated platelets. Both oxLDL+TC- and TC-induced PEVs enhanced macrophage HLA-DR and CD86 expression and decreased CD11c expression as well as secretion of several cytokines. Pathways related to cell cycle and regulation of gene expression, and immune system signaling were overrepresented in the differentially expressed genes between TC PEV -treated vs. control macrophages and oxLDL+TC PEV -treated vs. control macrophages, respectively. In conclusion, we speculate that oxLDL and activated platelets contribute to proatherogenic processes by increasing the number of PEVs that provide an adhesive and procoagulant surface, contain inflammatory mediators, and subtly finetune the macrophage gene expression.


Asunto(s)
Plaquetas , Vesículas Extracelulares , Plaquetas/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Vesículas Extracelulares/metabolismo , Expresión Génica
14.
J Extracell Vesicles ; 12(12): e12385, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38063210

RESUMEN

Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e., plasma and serum) are not only donor-dependent but also influenced by collection and preparation protocols. Since there are hundreds of pre-analytical protocols and over forty variables, the development of standard operating procedures for EV research is very challenging. To improve the reproducibility of blood EV research, the International Society for Extracellular Vesicles (ISEV) Blood EV Task Force proposes standardized reporting of (i) the applied blood collection and preparation protocol and (ii) the quality of the prepared plasma and serum samples. Gathering detailed information will provide insight into the performance of the protocols and more effectively identify potential confounders in the prepared plasma and serum samples. To collect this information, the ISEV Blood EV Task Force created the Minimal Information for Blood EV research (MIBlood-EV), a tool to record and report information about pre-analytical protocols used for plasma and serum preparation as well as assays used to assess the quality of these preparations. This tool does not require modifications of established local pre-analytical protocols and can be easily implemented to enhance existing databases thereby enabling evidence-based optimization of pre-analytical protocols through meta-analysis. Taken together, insight into the quality of prepared plasma and serum samples will (i) improve the quality of biobanks for EV research, (ii) guide the exchange of plasma and serum samples between biobanks and laboratories, (iii) facilitate inter-laboratory comparative EV studies, and (iv) improve the peer review process.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Reproducibilidad de los Resultados , Plasma
15.
Semin Thromb Hemost ; 38(1): 102-13, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22314608

RESUMEN

Platelets can release a heterogeneous pool of vesicles which include plasma membrane-derived microparticles (PMPs) and multivesicular body-derived exosomes. As both vesicle types are generated upon activation and their distinction is complicated due to an overlap in their molecular properties and sizes, they are best discussed as an entity, the platelet-derived microvesicles (PMVs). PMPs can be formed through several induction pathways, which determine their different molecular profiles and facilitate tailor-made participation in intercellular communication. This dynamic variability may lie behind the multifaceted and sometimes very different observations of the PMPs in physiological and pathological settings. Currently, little is known of platelet-derived exosomes. In all, PMVs not only participate in several homeostatic multicellular processes, such as hemostasis, maintenance of vascular health, and immunity, but they also play a role in thrombotic and inflammatory diseases and cancer progression. In the past few years, the number of original articles and reviews on microvesicles has dramatically increased, but the data simultaneously raise further questions, the answers to which depend on forthcoming analytical improvements. In this article, the differential activation pathways and the molecular and functional properties of PMVs are reviewed in context with their sometimes paradoxical role in health and in disease. Also, the methodological issues of PMV detection and analysis are discussed in the light of recent advances within the field.


Asunto(s)
Plaquetas/citología , Comunicación Celular/fisiología , Exosomas , Humanos , Microscopía Electrónica de Transmisión , Activación Plaquetaria/fisiología
16.
Eur J Cell Biol ; 101(3): 151226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35460959

RESUMEN

Cells release membrane-delimited particles into the environment. These particles are called "extracellular vesicles" (EVs), and EVs are present in fluids contacting cells, including body fluids and conditioned culture media. Because EVs change and contribute to health and disease, EVs have become a hot topic. From the thousands of papers now published on EVs annually, one easily gets the impression that EVs provide biomarkers for all diseases, and that EVs are carriers of all relevant biomolecules and are omnipotent therapeutics. At the same time, EVs are heterogeneous, elusive and difficult to study due to their physical properties and the complex composition of their environment. This overview addresses the current challenges encountered when working with EVs, and how we envision that most of these challenges will be overcome in the near future. Right now, an infrastructure is being developed to improve the reproducibility of EV measurement results. This infrastructure comprises expert task forces of the International Society of Extracellular Vesicles (ISEV) developing guidelines and recommendations, instrument calibration, standardized and transparent reporting, and education. Altogether, these developments will support the credibility of EV research by introducing robust reproducibility, which is a prerequisite for understanding their biological significance and biomarker potential.


Asunto(s)
Vesículas Extracelulares , Medios de Cultivo Condicionados , Reproducibilidad de los Resultados
17.
J Extracell Vesicles ; 11(10): e12273, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36257915

RESUMEN

Recent advances in cell biology research regarding extracellular vesicles have highlighted an increasing demand to obtain 3D cell culture-derived EVs, because they are considered to more accurately represent EVs obtained in vivo. However, there is still a grave need for efficient and tunable methodologies to isolate EVs from 3D cell cultures. Using nanofibrillar cellulose (NFC) scaffold as a 3D cell culture matrix, we developed a pipeline of two different approaches for EV isolation from cancer spheroids. A batch method was created for delivering high EV yield at the end of the culture period, and a harvesting method was created to enable time-dependent collection of EVs to combine EV profiling with spheroid development. Both these methods were easy to set up, quick to perform, and they provided a high EV yield. When compared to scaffold-free 3D spheroid cultures on ultra-low affinity plates, the NFC method resulted in similar EV production/cell, but the NFC method was scalable and easier to perform resulting in high EV yields. In summary, we introduce here an NFC-based, innovative pipeline for acquiring EVs from 3D cancer spheroids, which can be tailored to support the needs of variable EV research objectives.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Técnicas de Cultivo Tridimensional de Células , Celulosa
18.
J Extracell Vesicles ; 11(1): e12151, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041249

RESUMEN

Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.


Asunto(s)
Vesículas Extracelulares/metabolismo , Homeostasis/fisiología , Plaquetas/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Micropartículas Derivadas de Células/metabolismo , Sistema Nervioso Central/fisiología , Exosomas/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Inmunidad , Inflamación , Fenómenos Fisiológicos Musculoesqueléticos , Transducción de Señal , Sistema Urogenital/fisiología
19.
J Extracell Vesicles ; 11(1): e12190, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041301

RESUMEN

It is clear from Part I of this series that extracellular vesicles (EVs) play a critical role in maintaining the homeostasis of most, if not all, normal physiological systems. However, the majority of our knowledge about EV signalling has come from studying them in disease. Indeed, EVs have consistently been associated with propagating disease pathophysiology. The analysis of EVs in biofluids, obtained in the clinic, has been an essential of the work to improve our understanding of their role in disease. However, to interfere with EV signalling for therapeutic gain, a more fundamental understanding of the mechanisms by which they contribute to pathogenic processes is required. Only by discovering how the EV populations in different biofluids change-size, number, and physicochemical composition-in clinical samples, may we then begin to unravel their functional roles in translational models in vitro and in vivo, which can then feedback to the clinic. In Part II of this review series, the functional role of EVs in pathology and disease will be discussed, with a focus on in vivo evidence and their potential to be used as both biomarkers and points of therapeutic intervention.


Asunto(s)
Vesículas Extracelulares/metabolismo , Plaquetas/metabolismo , Plaquetas/patología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Micropartículas Derivadas de Células/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Exosomas/metabolismo , Microbioma Gastrointestinal , Humanos , Inmunidad , Inflamación , Sistema Musculoesquelético/metabolismo , Sistema Musculoesquelético/patología , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Sistema Urogenital/metabolismo , Sistema Urogenital/patología
20.
J Extracell Vesicles ; 10(12): e12158, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34651466

RESUMEN

Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.


Asunto(s)
Biomarcadores/orina , Diabetes Mellitus/orina , Vesículas Extracelulares/metabolismo , Transcriptoma/genética , Adulto , Estudios de Casos y Controles , Humanos , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA