Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430188

RESUMEN

Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.


Asunto(s)
Gorgojos , Humanos , Animales , Gorgojos/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Gossypium/genética , Gossypium/metabolismo , Vitelogeninas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
2.
Planta ; 254(6): 121, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779907

RESUMEN

MAIN CONCLUSION: Host-derived suppression of nematode essential genes decreases reproduction of Meloidogyne incognita in cotton. Root-knot nematodes (RKN) represent one of the most damaging plant-parasitic nematode genera worldwide. RNAi-mediated suppression of essential nematode genes provides a novel biotechnological strategy for the development of sustainable pest-control methods. Here, we used a Host Induced Gene Silencing (HIGS) approach by stacking dsRNA sequences into a T-DNA construct to target three essential RKN genes: cysteine protease (Mi-cpl), isocitrate lyase (Mi-icl), and splicing factor (Mi-sf), called dsMinc1, driven by the pUceS8.3 constitutive soybean promoter. Transgenic dsMinc1-T4 plants infected with Meloidogyne incognita showed a significant reduction in gall formation (57-64%) and egg masses production (58-67%), as well as in the estimated reproduction factor (60-78%), compared with the susceptible non-transgenic cultivar. Galls of the RNAi lines are smaller than the wild-type (WT) plants, whose root systems exhibited multiple well-developed root swellings. Transcript levels of the three RKN-targeted genes decreased 13- to 40-fold in nematodes from transgenic cotton galls, compared with those from control WT galls. Finally, the development of non-feeding males in transgenic plants was 2-6 times higher than in WT plants, indicating a stressful environment for nematode development after RKN gene silencing. Data strongly support that HIGS of essential RKN genes is an effective strategy to improve cotton plant tolerance. This study presents the first application of dsRNA sequences to target multiple genes to promote M. incognita tolerance in cotton without phenotypic penalty in transgenic plants.


Asunto(s)
Gossypium , Tylenchoidea , Animales , Gossypium/genética , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , ARN Bicatenario , Tylenchoidea/genética
3.
Front Mol Biosci ; 10: 1073721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950526

RESUMEN

The cotton boll weevil (CBW) (Anthonomus grandis) is one of the major insect pests of cotton in Brazil. Currently, CBW control is mainly achieved by insecticide application, which is costly and insufficient to ensure effective crop protection. RNA interference (RNAi) has been used in gene function analysis and the development of insect control methods. However, some insect species respond poorly to RNAi, limiting the widespread application of this approach. Therefore, nanoparticles have been explored as an option to increase RNAi efficiency in recalcitrant insects. Herein, we investigated the potential of chitosan-tripolyphosphate (CS-TPP) and polyethylenimine (PEI) nanoparticles as a dsRNA carrier system to improve RNAi efficiency in the CBW. Different formulations of the nanoparticles with dsRNAs targeting genes associated with juvenile hormone metabolism, such as juvenile hormone diol kinase (JHDK), juvenile hormone epoxide hydrolase (JHEH), and methyl farnesoate hydrolase (MFE), were tested. The formulations were delivered to CBW larvae through injection (0.05-2 µg), and the expression of the target genes was evaluated using RT-qPCR. PEI nanoparticles increased targeted gene silencing compared with naked dsRNAs (up to 80%), whereas CS-TPP-dsRNA nanoparticles decreased gene silencing (0%-20%) or led to the same level of gene silencing as the naked dsRNAs (up to 50%). We next evaluated the effects of targeting a single gene or simultaneously targeting two genes via the injection of naked dsRNAs or dsRNAs complexed with PEI (500 ng) on CBW survival and phenotypes. Overall, the gene expression analysis showed that the treatments with PEI targeting either a single gene or multiple genes induced greater gene silencing than naked dsRNA (∼60%). In addition, the injection of dsJHEH/JHDK, either naked or complexed with PEI, significantly affected CBW survival (18% for PEI nanoparticles and 47% for naked dsRNA) and metamorphosis. Phenotypic alterations, such as uncompleted pupation or malformed pupae, suggested that JHEH and JHDK are involved in developmental regulation. Moreover, CBW larvae treated with dsJHEH/JHDK + PEI (1,000 ng/g) exhibited significantly lower survival rate (55%) than those that were fed the same combination of naked dsRNAs (30%). Our findings demonstrated that PEI nanoparticles can be used as an effective tool for evaluating the biological role of target genes in the CBW as they increase the RNAi response.

4.
An Acad Bras Cienc ; 84(1): 185-90, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22441608

RESUMEN

Chagasin may be considered a potential plant-incorporated protectant (PIP) protein due to its deleterious effects on insect pests. However, extensive safety studies with PIP's are necessary before introducing them into the target plant. Thus, a short-term feeding trial in rats with high doses of r-chagasin was conducted to provide evidences about its safety. Three test diets containing casein + r-chagasin (0.25, 0.5 and 1% of total protein) were offered to rats (10 days). The test diets did not show adverse effects upon the development, organ weight, hematological parameters and serum protein profiles of rats, providing preliminary information on the safety of r-chagasin.


Asunto(s)
Alimentación Animal/toxicidad , Proteínas de Insectos/toxicidad , Tamaño de los Órganos/efectos de los fármacos , Animales , Proteínas de Insectos/administración & dosificación , Masculino , Modelos Animales , Control Biológico de Vectores , Ratas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/toxicidad , Pruebas de Toxicidad/métodos , Aumento de Peso
5.
BMC Biotechnol ; 11: 115, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-22115195

RESUMEN

BACKGROUND: Cotton (Gossypium spp.) is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2) family member with no previous characterization. RESULTS: Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2) and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. CONCLUSIONS: uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2) and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues.


Asunto(s)
Regiones no Traducidas 5'/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/enzimología , Regiones Promotoras Genéticas/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Arabidopsis , Secuencia de Bases , Codón sin Sentido/genética , Cartilla de ADN/genética , Flores/metabolismo , Fluorometría , Regulación de la Expresión Génica de las Plantas/genética , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Transgenes/genética , Enzimas Ubiquitina-Conjugadoras/genética
6.
BMC Biotechnol ; 11: 85, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21906288

RESUMEN

BACKGROUND: The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. RESULTS: Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. CONCLUSIONS: The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.


Asunto(s)
Proteínas Bacterianas , Barajamiento de ADN/métodos , Endotoxinas , Proteínas Hemolisinas , Control de Insectos/métodos , Gorgojos , Secuencia de Aminoácidos , Animales , Toxinas de Bacillus thuringiensis , Larva , Dosificación Letal Mediana , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Mutación , Biblioteca de Péptidos , Estabilidad Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
7.
Pest Manag Sci ; 77(9): 4054-4063, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33896113

RESUMEN

BACKGROUND: The hemolymph and insect gut together have an essential role in the immune defense against microorganisms, including the production of antimicrobial peptides (AMP). AMPs are mainly induced by two specific signaling pathways, Toll and immune deficiency (IMD). Here, we characterize the expression profile of four genes from both pathways and describe the importance of AgraRelish in the immune defense of Anthonomus grandis against the entomopathogenic fungus Metarhizium anisopliae by RNA interference (RNAi). RESULTS: To characterize the pathway that is activated early during the A. grandis-M. anisopliae interaction, we assessed the expression profiles of AgraMyD88 and AgraDorsal (Toll pathway), AgraIMD and AgraRelish (IMD pathway), and several AMP genes. Interestingly, we found that IMD pathway genes are upregulated early, and Toll pathway genes are upregulated just 3 days after inoculation (DAI). Furthermore, nine AMPs were upregulated 24 h after fungus inoculation, including attacins, cecropins, coleoptericins, and defensins. AgraRelish knockdown resulted in a reduction in median lethal time (LT50 ) for M. anisopliae-treated insects of around 2 days compared to control treatments. In addition, AgraRelish remained knocked down at 3 DAI. Finally, we identified that AgraRelish knockdown increased fungal loads at 2 DAI compared to control treatments, possibly indicating a faster infection. CONCLUSIONS: Our data indicate the influence of the IMD pathway on the antifungal response in A. grandis. Combining biocontrol and RNAi could significantly improve cotton boll weevil management. Hence, AgraRelish is a potential target for the development of biotechnological tools aimed at improving the efficacy of M. anisopliae against A. grandis.


Asunto(s)
Metarhizium , Gorgojos , Animales , Biotecnología , Insectos , Metarhizium/genética , Interferencia de ARN
8.
BMC Biotechnol ; 10: 44, 2010 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-20565807

RESUMEN

BACKGROUND: Coffee is an important crop and is crucial to the economy of many developing countries, generating around US$70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US$500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an alpha-amylase inhibitor gene (alpha-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants. RESULTS: We transformed C. arabica with the alpha-amylase inhibitor-1 gene (alpha-AI1) from the common bean, Phaseolus vulgaris, under control of the seed-specific phytohemagglutinin promoter (PHA-L). The presence of the alpha-AI1 gene in six regenerated transgenic T1 coffee plants was identified by PCR and Southern blotting. Immunoblotting and ELISA experiments using antibodies against alpha-AI1 inhibitor showed a maximum alpha-AI1 concentration of 0.29% in crude seed extracts. Inhibitory in vitro assays of the alpha-AI1 protein against H. hampei alpha-amylases in transgenic seed extracts showed up to 88% inhibition of enzyme activity. CONCLUSIONS: This is the first report showing the production of transgenic coffee plants with the biotechnological potential to control the coffee berry borer, the most important insect-pest of crop coffee.


Asunto(s)
Coffea/metabolismo , Control de Insectos/métodos , Phaseolus/genética , Lectinas de Plantas/genética , alfa-Amilasas/antagonistas & inhibidores , Animales , Coffea/genética , Escarabajos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plásmidos , Regiones Promotoras Genéticas , Semillas/genética , Semillas/metabolismo , Transformación Genética
9.
PLoS One ; 15(8): e0235575, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32745084

RESUMEN

The sugarcane borer (Diatraea saccharalis, Fabricius, 1794) is a devastating pest that causes millions of dollars of losses each year to sugarcane producers by reducing sugar and ethanol yields. The control of this pest is difficult due to its endophytic behavior and rapid development. Pest management through biotechnological approaches has emerged in recent years as an alternative to currently applied methods. Genetic information about the target pests is often required to perform biotechnology-based management. The genomic and transcriptomic data for D. saccharalis are very limited. Herein, we report a tissue-specific transcriptome of D. saccharalis larvae and a differential expression analysis highlighting the physiological characteristics of this pest in response to two different diets: sugarcane and an artificial diet. Sequencing was performed on the Illumina HiSeq 2000 platform, and a de novo assembly was generated. A total of 27,626 protein-coding unigenes were identified, among which 1,934 sequences were differentially expressed between treatments. Processes such as defence, digestion, detoxification, signaling, and transport were highly represented among the differentially expressed genes (DEGs). Furthermore, seven aminopeptidase genes were identified as candidates to encode receptors of Cry proteins, which are toxins of Bacillus thuringiensis used to control lepidopteran pests. Since plant-insect interactions have produced a considerable number of adaptive responses in hosts and herbivorous insects, the success of phytophagous insects relies on their ability to overcome challenges such as the response to plant defences and the intake of nutrients. In this study, we identified metabolic pathways and specific genes involved in these processes. Thus, our data strongly contribute to the knowledge advancement of insect transcripts, which can be a source of target genes for pest management.


Asunto(s)
Dieta , Mucosa Intestinal/metabolismo , Lepidópteros/genética , Transcriptoma , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Animales , Herbivoria/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Lepidópteros/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
10.
Front Physiol ; 11: 588450, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192604

RESUMEN

The sugarcane giant borer (SGB), Telchin licus licus, is a pest that has strong economic relevance for sugarcane producers. Due to the endophytic behavior of the larva, current methods of management are inefficient. A promising biotechnological management option has been proposed based on RNA interference (RNAi), a process that uses molecules of double-stranded RNA (dsRNA) to specifically knock down essential genes and reduce insect survival. The selection of suitable target genes is often supported by omic sciences. Studies have shown that genes related to feeding adaptation processes are good candidates to be targeted by RNAi for pest management. Among those genes, esterases are highlighted because of their impact on insect development. In this study, the objective was to evaluate the transcriptome responses of the SGB's gut in order to provide curated data of genes that could be used for pest management by RNAi in future studies. Further, we validated the function of an esterase-coding gene and its potential as a target for RNAi-based control. We sequenced the gut transcriptome of SGB larvae by Illumina HiSeq and evaluated its gene expression profiles in response to different diets (sugarcane stalk and artificial diet). We obtained differentially expressed genes (DEGs) involved in detoxification, digestion, and transport, which suggest a generalist mechanism of adaptation in SGB larvae. Among the DEGs, was identified and characterized a candidate juvenile hormone esterase gene (Tljhe). We knocked down the Tljhe gene by oral delivery of dsRNA molecules and evaluated gene expression in the gut. The survival and nutritional parameters of the larvae were measured along the developmental cycle of treated insects. We found that the gene Tljhe acts as a regulator of feeding behavior. The knockdown of Tljhe triggered a forced starvation state in late larval instars that significantly reduced the fitness of the larvae. However, the mechanism of action of this gene remains unclear, and the correlation between the expression of Tljhe and the levels of juvenile hormone (JH) metabolites in the hemolymph of the SGB must be assessed in future research.

11.
Sci Rep ; 9(1): 12804, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488852

RESUMEN

Coffee production is a global industry valued at approximately 173 billion US dollars. One of the main challenges facing coffee production is the management of the coffee berry borer (CBB), Hypothenemus hampei, which is considered the primary arthropod pest of coffee worldwide. Current control strategies are inefficient for CBB management. Although biotechnological alternatives, including RNA interference (RNAi), have been proposed in recent years to control insect pests, characterizing the genetics of the target pest is essential for the successful application of these emerging technologies. In this study, we employed RNA-seq to obtain the transcriptome of three developmental stages of the CBB (larva, female and male) to increase our understanding of the CBB life cycle in relation to molecular features. The CBB transcriptome was sequenced using Illumina Hiseq and assembled de novo. Differential gene expression analysis was performed across the developmental stages. The final assembly produced 29,434 unigenes, of which 4,664 transcripts were differentially expressed. Genes linked to crucial physiological functions, such as digestion and detoxification, were determined to be tightly regulated between the reproductive and nonreproductive stages of CBB. The data obtained in this study help to elucidate the critical roles that several genes play as regulatory elements in CBB development.


Asunto(s)
Coffea/parasitología , Genes de Insecto , Gorgojos/crecimiento & desarrollo , Gorgojos/genética , Animales , Femenino , Perfilación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Masculino , RNA-Seq , Transcriptoma
12.
Front Physiol ; 8: 256, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28503153

RESUMEN

Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

13.
Front Plant Sci ; 7: 165, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925081

RESUMEN

Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

14.
Trop Plant Biol ; 8: 98-107, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26697127

RESUMEN

Genetic transformation of coffee (Coffea spp.), the second most traded commodity worldwide, is an alternative approach to introducing features that cannot be introgressed by traditional crossings. The transgenic stability, heritability and quantitative and spatial expression patterns of the seed-specific promoter phytohemagglutinin (PHA-L) from Phaseolus vulgaris were characterized in genetically modified C. arabica expressing the α-amylase inhibitor-1 (α-AI1) gene. The α-AI1 inhibitor shows considerable activity toward digestive enzymes of the coffee berry borer (CBB) Hypothenemus hampei. This insect pest expends its life cycle almost entirely in coffee berries. Transgene containment in the fruit is important to meeting food and environmental safety requirements for releasing genetically modified (GM) crops. PCR analysis of T2 coffee plants showed a Mendelian single-copy segregation pattern. Ectopic transgene expression was only detected in coffee grains, as demonstrated by reverse transcription-PCR analysis of different plant tissues. An intense immunocytochemical signal associated with α-AI1 protein expression was localized to endospermic cells. In addition, a delay in the larval development of CBB was observed after challenging transgenic coffee seeds with the insect. These results indicate that the PHA-L promoter might be a useful tool in coffee for the seed-specific expression of genes related to coffee bean productivity, quality and pest protection. The biotechnological applicability of the α-AI1 gene for controlling CBB is also discussed. This work is the first report showing a seed-specific transgene expression in coffee plants.

15.
Arch Insect Biochem Physiol ; 66(4): 169-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18000877

RESUMEN

The Mexican bean weevil, Zabrotes subfasciatus, feeds on several seeds such as Vigna unguiculata, Phaseolus vulgaris, and Pisum sativum, causing severe crop losses. This ability to obtain essential compounds from different diets could possibly be explained due to a wide variability of digestive proteinases present in the weevil's midgut. These may improve digestion of many different dietary proteins. Coleopteran serine-like proteinases have not been thoroughly characterized at the molecular level. In this report, a full-length cDNA encoding a trypsin-like protein, named ZsTRYP, was isolated from Z. subfasciatus larvae using RT-PCR, 5' and 3' RACE techniques. The quantitative real-time PCR analysis strongly correlated the Zstryp transcript accumulation to the major feeding developmental larval stage. Zstryp cDNA was subcloned into pET101 vector and expressed in a Escherichia coli BL21(DE3) strain. Nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography was used to purify a 29.0-kDa recombinant enzyme. The purified ZsTRYP was then assayed with several synthetic peptide substrates and also challenged with different inhibitors. The biochemical data allowed us to classify ZsTRYP as a trypsin. Moreover, homology modeling analysis indicated a typical trypsin structural core and a conserved catalytic triad (His(41), Asp(86), and Ser(182)).


Asunto(s)
Serina Endopeptidasas/metabolismo , Gorgojos/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Larva/enzimología , Datos de Secuencia Molecular , Pliegue de Proteína , Análisis de Secuencia de ADN , Serina Endopeptidasas/genética , Serina Endopeptidasas/aislamiento & purificación , Gorgojos/genética
16.
J. pediatr. (Rio J.) ; 73(2): 95-100, mar.-abr. 1997. tab
Artículo en Portugués | LILACS | ID: lil-199589

RESUMEN

Objetivo: a filariose linfática ainda representa um grave problema de saúde pública na cidade do Recife. Apesar de inquéritos anteriores terem registrado uma freqüência relativamente elevada de microfilaremia na populaçäo pediátrica, desconhecia-se a prevalência de doença filarial, assim como o padräo microfilarêmico atual nesse grupo. Este trabalho descreve o perfil epidemiológico da filariose em crianças e adolescentes residentes em áreas de alta endemicidade do Recife. Métodos: O estudo de prevalência de microfilaremia foi feito através de um censo realizado no período de dezembro de 1990 a julho de 1991. A pesquisa de microfilária em gota espessa (45µl) foi efetuada em 1.464 crianças com idade entre 5 e 14 anos, das quais 967 foram submetidas a exame clínico...


Asunto(s)
Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Filariasis/epidemiología , Wuchereria bancrofti/parasitología , Brasil/epidemiología , Distribución de Chi-Cuadrado , Microfilarias , Morbilidad , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA