Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069375

RESUMEN

This study presents an in vitro analysis of the bactericidal and cytotoxic properties of hybrid films containing nickel oxide (NiO) and nickel ferrite (NiFe2O4) nanoparticles embedded in polypropylene (PP). The solvent casting method was used to synthesize films of PP, PP@NiO, and PP@NiFe2O4, which were characterized by different spectroscopic and microscopic techniques. The X-ray diffraction (XRD) patterns confirmed that the small crystallite sizes of NiO and NiFe2O4 NPs were maintained even after they were incorporated into the PP matrix. From the Raman scattering spectroscopy data, it was evident that there was a significant interaction between the NPs and the PP matrix. Additionally, the Scanning Electron Microscopy (SEM) analysis revealed a homogeneous dispersion of NiO and NiFe2O4 NPs throughout the PP matrix. The incorporation of the NPs was observed to alter the surface roughness of the films; this behavior was studied by atomic force microscopy (AFM). The antibacterial properties of all films were evaluated against Pseudomonas aeruginosa (ATCC®: 43636™) and Staphylococcus aureus (ATCC®: 23235™), two opportunistic and nosocomial pathogens. The PP@NiO and PP@ NiFe2O4 films showed over 90% bacterial growth inhibition for both strains. Additionally, the effects of the films on human skin cells, such as epidermal keratinocytes and dermal fibroblasts, were evaluated for cytotoxicity. The PP, PP@NiO, and PP@NiFe2O4 films were nontoxic to human keratinocytes. Furthermore, compared to the PP film, improved biocompatibility of the PP@NiFe2O4 film with human fibroblasts was observed. The methodology utilized in this study allows for the production of hybrid films that can inhibit the growth of Gram-positive bacteria, such as S. aureus, and Gram-negative bacteria, such as P. aeruginosa. These films have potential as coating materials to prevent bacterial proliferation on surfaces.


Asunto(s)
Nanopartículas , Polipropilenos , Humanos , Polipropilenos/química , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química
2.
J Nanobiotechnology ; 16(1): 2, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321021

RESUMEN

BACKGROUND: Treatment of severe or chronic skin wounds is an important challenge facing medicine and a significant health care burden. Proper wound healing is often affected by bacterial infection; where biofilm formation is one of the main risks and particularly problematic because it confers protection to microorganisms against antibiotics. One avenue to prevent bacterial colonization of wounds is the use of silver nanoparticles (AgNPs); which have proved to be effective against non-multidrug-resistant and multidrug-resistant bacteria. In addition, the use of mesenchymal stem cells (MSC) is an excellent option to improve wound healing due to their capability for differentiation and release of relevant growth factors. Finally, radiosterilized pig skin (RPS) is a biomatrix successfully used as wound dressing to avoid massive water loss, which represents an excellent carrier to deliver MSC into wound beds. Together, AgNPs, RPS and MSC represent a potential dressing to control massive water loss, prevent bacterial infection and enhance skin regeneration; three essential processes for appropriate wound healing with minimum scaring. RESULTS: We synthesized stable 10 nm-diameter spherical AgNPs that showed 21- and 16-fold increase in bacteria growth inhibition (in comparison to antibiotics) against clinical strains Staphylococcus aureus and Stenotrophomonas maltophilia, respectively. RPS samples were impregnated with different AgNPs suspensions to develop RPS-AgNPs nanocomposites with different AgNPs concentrations. Nanocomposites showed inhibition zones, in Kirby-Bauer assay, against both clinical bacteria tested. Nanocomposites also displayed antibiofilm properties against S. aureus and S. maltophilia from RPS samples impregnated with 250 and 1000 ppm AgNPs suspensions, respectively. MSC were isolated from adipose tissue and seeded on nanocomposites; cells survived on nanocomposites impregnated with up to 250 ppm AgNPs suspensions, showing 35% reduction in cell viability, in comparison to cells on RPS. Cells on nanocomposites proliferated with culture days, although the number of MSC on nanocomposites at 24 h of culture was lower than that on RPS. CONCLUSIONS: AgNPs with better bactericide activity than antibiotics were synthesized. RPS-AgNPs nanocomposites impregnated with 125 and 250 ppm AgNPs suspensions decreased bacterial growth, decreased biofilm formation and were permissive for survival and proliferation of MSC; constituting promising multi-functional dressings for successful treatment of skin wounds.


Asunto(s)
Vendajes , Biopelículas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Nanocompuestos/química , Plata/farmacología , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Nanocompuestos/ultraestructura , Soluciones , Esterilización , Sus scrofa
3.
Nanomedicine ; 14(5): 1695-1706, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29673978

RESUMEN

ZnO and Zn acetate nanoparticles were embedded in polycaprolactone coaxial-fibers and uniaxial-fibers matrices to develop potential antibacterial nanocomposite wound dressings (mats). Morphology, composition, wettability, crystallinity and fiber structure of mats were characterized. Antibacterial properties of mats were tested against E. coli and S. aureus by turbidity and MTT assays. The effect of UVA illumination (prior to bacteria inoculation) on mats' antibacterial activity was also studied. Results showed that a coaxial-fibers design maintained nanoparticles distributed in the outer-shell of fibers and, in general, enhanced the antibacterial effect of the mats, in comparison to conventional uniaxial-fibers mats. Results indicated that mats simultaneously inhibited planktonic and biofilm bacterial growth by, probably, two main antibacterial mechanisms; 1) release of Zn2+ ions (mainly from Zn acetate nanoparticles) and 2) photocatalytic oxidative processes exerted by ZnO nanoparticles. Antibacterial properties of mats were significantly improved by coaxial-fibers design and exposure to UVA-light prior to bacteria inoculation.


Asunto(s)
Antibacterianos/administración & dosificación , Escherichia coli/efectos de los fármacos , Nanofibras/administración & dosificación , Poliésteres/química , Staphylococcus aureus/efectos de los fármacos , Acetato de Zinc/administración & dosificación , Óxido de Zinc/administración & dosificación , Antibacterianos/química , Vendajes , Escherichia coli/crecimiento & desarrollo , Nanofibras/química , Nanotecnología , Staphylococcus aureus/crecimiento & desarrollo , Acetato de Zinc/química , Óxido de Zinc/química
4.
Biomed Mater ; 19(5)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39121890

RESUMEN

This study delves into the potential of amorphous titanium oxide (aTiO2) nano-coating to enhance various critical aspects of non-Ti-based metallic orthopedic implants. These implants, such as medical-grade stainless steel (SS), are widely used for orthopedic devices that demand high strength and durability. The aTiO2nano-coating, deposited via magnetron sputtering, is a unique attempt to improve the osteogenesis, the inflammatory response, and to reduce bacterial colonization on SS substrates. The study characterized the nanocoated surfaces (SS-a TiO2) in topography, roughness, wettability, and chemical composition. Comparative samples included uncoated SS and sandblasted/acid-etched Ti substrates (Ti). The biological effects were assessed using human mesenchymal stem cells (MSCs) and primary murine macrophages. Bacterial tests were carried out with two aerobic pathogens (S. aureusandS. epidermidis) and an anaerobic bacterial consortium representing an oral dental biofilm. Results from this study provide strong evidence of the positive effects of the aTiO2nano-coating on SS surfaces. The coating enhanced MSC osteoblastic differentiation and exhibited a response similar to that observed on Ti surfaces. Macrophages cultured on aTiO2nano-coating and Ti surfaces showed comparable anti-inflammatory phenotypes. Most significantly, a reduction in bacterial colonization across tested species was observed compared to uncoated SS substrates, further supporting the potential of aTiO2nano-coating in biomedical applications. The findings underscore the potential of magnetron-sputtering deposition of aTiO2nano-coating on non-Ti metallic surfaces such as medical-grade SS as a viable strategy to enhance osteoinductive factors and decrease pathogenic bacterial adhesion. This could significantly improve the performance of metallic-based biomedical devices beyond titanium.


Asunto(s)
Materiales Biocompatibles Revestidos , Macrófagos , Ensayo de Materiales , Células Madre Mesenquimatosas , Osteogénesis , Acero Inoxidable , Propiedades de Superficie , Titanio , Titanio/química , Acero Inoxidable/química , Animales , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Macrófagos/metabolismo , Osteogénesis/efectos de los fármacos , Diferenciación Celular , Prótesis e Implantes , Osteoblastos/citología , Staphylococcus aureus/efectos de los fármacos , Biopelículas , Staphylococcus epidermidis/efectos de los fármacos , Adhesión Bacteriana , Humectabilidad
5.
Polymers (Basel) ; 16(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38891515

RESUMEN

Chitin is a structural polysaccharide abundant in the biosphere. Chitin possesses a highly ordered crystalline structure that makes its processing a challenge. In this study, chitin hydrogels and methanogels, prepared by dissolution in calcium chloride/methanol, were subjected to supercritical carbon dioxide (scCO2) to produce porous materials for use as scaffolds for osteoblasts. The control of the morphology, porosity, and physicochemical properties of the produced materials was performed according to the operational conditions, as well as the co-solvent addition. The dissolution of CO2 in methanol co-solvent improved the sorption of the compressed fluid into the hydrogel, rendering highly porous chitin scaffolds. The chitin crystallinity index significantly decreased after processing the hydrogel in supercritical conditions, with a significant effect on its swelling capacity. The use of scCO2 with methanol co-solvent resulted in chitin scaffolds with characteristics adequate to the adhesion and proliferation of osteoblasts.

6.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917837

RESUMEN

Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Proliferación Celular , Mucosa Bucal , Osteogénesis , Células Madre , Titanio , Titanio/química , Humanos , Osteogénesis/efectos de los fármacos , Mucosa Bucal/citología , Mucosa Bucal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Propiedades de Superficie , Células Cultivadas , Osteoblastos/citología , Osteoblastos/metabolismo , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Supervivencia Celular , Oseointegración/efectos de los fármacos , Materiales Biocompatibles/química
7.
Biomed Phys Eng Express ; 9(3)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36821850

RESUMEN

Periodontitis is a highly prevalent infectious disease that causes the progressive destruction of the periodontal supporting tissues. If left untreated, it can lead to tooth loss impairing oral function, aesthetics, and the patient's overall quality of life. Guided and Bone Tissue Regeneration (GTR/BTR) are surgical therapies based on the placement of a membrane that prevents epithelial growth into the defect, allowing the periodontal/bone cells (including stem cells) to regenerate or restore the affected tissues. The success of these therapies is commonly affected by the local bacterial colonization of the membrane area and its fast biodegradation, causing postoperative infections and a premature rupture of the membrane limiting the regeneration process. This study presents the antibacterial and osteogenic differentiation properties of polycaprolactone-gelatin (PCL-G) electrospun membranes modified with ZnO nanoparticles (ZnO-NPs). The membranes´ chemical composition, surface roughness, biodegradation, water wettability, and mechanical properties under simulated physiological conditions, were analyzed by the close relationship with their biological properties. The PCL-G membranes modified with 1, 3, and 6% w/w of ZnO-NPs showed a significant reduction in the planktonic and biofilm formation of four clinically relevant bacteria;A. actinomycetemcomitansserotype b, P. gingivalis,E. coli, andS. epidermidis. Additionally, the membranes presented appropriate mechanical properties and biodegradation rates to be potentially used in clinical treatments. Notably, the membranes modified with the lowest concentration of ZnO-NPs (1% w/w) stimulated the production of osteoblast markers and calcium deposits in human bone marrow-derived mesenchymal stem cells (BM-MSC) and were biocompatible to human osteoblasts cells (hFOB). These results suggest that the PCL-G membranes with 1% w/w of ZnO-NPs are high-potential candidates for GTR/BTR treatments, as they were the most effective in terms of better antibacterial effectiveness at a lower NPs-concentration while creating a favorable cellular microenvironment for bone growth.


Asunto(s)
Osteogénesis , Óxido de Zinc , Humanos , Gelatina/química , Óxido de Zinc/farmacología , Andamios del Tejido/química , Escherichia coli , Calidad de Vida , Regeneración Ósea , Antibacterianos/farmacología , Diferenciación Celular
8.
Pharmaceutics ; 15(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631319

RESUMEN

Radiosterilized pig skin (RPS) has been used as a dressing for burns since the 1980s. Its similarity to human skin in terms of the extracellular matrix (ECM) allows the attachment of mesenchymal stem cells, making it ideal as a scaffold to create cellularized constructs. The use of silver nanoparticles (AgNPs) has been proven to be an appropriate alternative to the use of antibiotics and a potential solution against multidrug-resistant bacteria. RPS can be impregnated with AgNPs to develop nanomaterials capable of preventing wound infections. The main goal of this study was to assess the use of RPS as a scaffold for autologous fibroblasts (Fb), keratinocytes (Kc), and mesenchymal stem cells (MSC) in the treatment of second-degree burns (SDB). Additionally, independent RPS samples were impregnated with AgNPs to enhance their properties and further develop an antibacterial dressing that was initially tested using a burn mouse model. This protocol was approved by the Research and Ethics Committee of the INRLGII (INR 20/19 AC). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis of the synthesized AgNPs showed an average size of 10 nm and rounded morphology. Minimum inhibitory concentrations (MIC) and Kirby-Bauer assays indicated that AgNPs (in solution at a concentration of 125 ppm) exhibit antimicrobial activity against the planktonic form of S. aureus isolated from burned patients; moreover, a log reduction of 1.74 ± 0.24 was achieved against biofilm formation. The nanomaterial developed with RPS impregnated with AgNPs solution at 125 ppm (RPS-AgNPs125) facilitated wound healing in a burn mouse model and enhanced extracellular matrix (ECM) deposition, as analyzed by Masson's staining in histological samples. No silver was detected by energy-dispersive X-ray spectroscopy (EDS) in the skin, and neither by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in different organs of the mouse burn model. Calcein/ethidium homodimer (EthD-1), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and scanning electron microscopy (SEM) analysis demonstrated that Fb, Kc, and MSC could attach to RPS with over 95% cell viability. Kc were capable of releasing FGF at 0.5 pg above control levels, as analyzed by ELISA assays. An autologous RPS-Fb-Kc construct was implanted in a patient with SDB and compared to an autologous skin graft. The patient recovery was assessed seven days post-implantation, and the patient was followed up at one, two, and three months after the implantation, exhibiting favorable recovery compared to the gold standard, as measured by the cutometer. In conclusion, RPS effectively can be used as a scaffold for the culture of Fb, Kc, and MSC, facilitating the development of a cellularized construct that enhances wound healing in burn patients.

9.
Materials (Basel) ; 15(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955174

RESUMEN

Biomaterials with adequate properties to direct a biological response are essential for orthopedic and dental implants. The surface properties are responsible for the biological response; thus, coatings with biologically relevant properties such as osteoinduction are exciting options to tailor the surface of different bulk materials. Metal oxide coatings such as TiO2, ZrO2, Nb2O5 and Ta2O5 have been suggested as promising for orthopedic and dental implants. However, a comparative study among them is still missing to select the most promising for bone-growth-related applications. In this work, using magnetron sputtering, TiO2, ZrO2, Ta2O5, and Nb2O5 thin films were deposited on Si (100) substrates. The coatings were characterized by Optical Profilometry, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Diffraction, Water Contact Angle measurements, and Surface Free Energy calculations. The cell adhesion, viability, proliferation, and differentiation toward the osteoblastic phenotype of mesenchymal stem cells plated on the coatings were measured to define the biological response. Results confirmed that all coatings were biocompatible. However, a more significant number of cells and proliferative cells were observed on Nb2O5 and Ta2O5 compared to TiO2 and ZrO2. Nevertheless, Nb2O5 and Ta2O5 seemed to induce cell differentiation toward the osteoblastic phenotype in a longer cell culture time than TiO2 and ZrO2.

10.
Materials (Basel) ; 15(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35591473

RESUMEN

The microstructural characteristics of biodegradable Mg alloys determine their performance and appropriateness for orthopedic fixation applications. In this work, the effect of the annealing treatment of a Mg-0.7Zn-0.6Ca (ZX11) alloy on the mechanical integrity, corrosive behavior, and biocompatibility-osteoinduction was studied considering two annealing temperatures, 350 and 450 °C. The microstructure showed a recrystallized structure, with a lower number of precipitates, grain size, and stronger basal texture for the ZX11-350 condition than the ZX11-450. The characteristics mentioned above induce a higher long-term degradation rate for the ZX11-450 than the ZX11-350 on days 7th and 15th of immersion. In consequence, the mechanical integrity changes within this period. The increased degradation rate of the ZX11-450 condition reduces 40% the elongation at failure, in contrast with the 16% reduction for the ZX11-350 condition. After that period, the mechanical integrity remained unchanged. No cytotoxic effects were observed for both treatments and significant differentiation of mesenchymal stem cells into the osteoblast phenotype was observed.

11.
Biomed Mater ; 16(4)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34038883

RESUMEN

Periodontitis is a chronic, multifactorial, inflammatory disease characterized by the progressive destruction of the periodontal tissues. Guided tissue regeneration (GTR), involving the use of barrier membranes, is one of the most successful clinical procedures for periodontal therapy. Nevertheless, rapid degradation of the membranes and membrane-related infections are considered two of the major reasons for GTR clinical failure. Recently, integration of non-antibiotic, antimicrobial materials to the membranes has emerged as a novel strategy to face the bacterial infection challenge, without increasing bacterial resistance. In this sense, bismuth subsalicylate (BSS) is a non-antibiotic, metal-based antimicrobial agent effective against different bacterial strains, that has been long safely used in medical treatments. Thus, the aim of the present work was to fabricate fibrillar, non-rapidly bioresorbable, antibacterial GTR membranes composed of polycaprolactone (PCL), gelatin (Gel), and BSS as the antibacterial agent. PCL-G-BSS membranes with three different BSS concentrations (2 wt./v%, 4 wt./v%, and 6 wt./v%) were developed by electrospinning and their morphology, composition, water wettability, mechanical properties, Bi release and degradation rate were characterized. The Cytotoxicity of the membranes was studiedin vitrousing human osteoblasts (hFOB) and gingival fibroblasts (HGF-1), and their antibacterial activity was tested againstAggregatibacter actinomycetemcomitans, Escherichia coli, Porphyromonas gingivalisandStaphylococcus aureus.The membranes obtained exhibited adequate mechanical properties for clinical application, and appropriate degradation rates for allowing periodontal defects regeneration. The hFOB and HGF-1 cells displayed adequate viability when in contact with the lixiviated products from the membranes, and, in general, displayed antibacterial activity against the four bacteria strains tested. Thus, the PCL-G-BSS membranes showed to be appropriate as potential barrier membranes for periodontal GTR treatments.


Asunto(s)
Antibacterianos , Bismuto , Gelatina/química , Membranas Artificiales , Compuestos Organometálicos , Poliésteres/química , Salicilatos , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/toxicidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/toxicidad , Bismuto/química , Bismuto/farmacología , Bismuto/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas Electroquímicas , Fibroblastos/efectos de los fármacos , Encía/citología , Regeneración Tisular Guiada Periodontal , Humanos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/toxicidad , Salicilatos/química , Salicilatos/farmacología , Salicilatos/toxicidad
12.
Eng Life Sci ; 21(8-9): 539-543, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34584518

RESUMEN

Two-dimensional (2D) culture of cells from giant cell tumor of bone (GCTB) is affected by loss of the multinucleated giant cells in subsequent passages. Therefore, there is limited time to study GCTB with all its histological components in 2D culture. Here, we explored the possibility of culturing GCTB cells on a polycaprolactone (PCL)-printed scaffold. We also evaluated the viability of the cultured cells and their adherence to the PCL scaffold at day 14 days using immunofluorescence analysis with calcein, vinculin, and phalloidin. Using the histological technique with hematoxylin and eosin staining, we observed all the histological components of GCTB in this 3D model. Immunohistochemical assays with cathepsin K, p63, and receptor activator of nuclear factor (NF)-κB ligand (RANKL) yielded positive results in this construct, which allowed us to confirm that the seeded cells maintained the expression of GCTB markers. Based on these findings, we concluded that the PCL scaffold is an efficient model to culture GCTB cells, and the cell viability and adherence to the scaffold can be preserved for up to 14 days. Moreover, this model can also be used in subsequent studies to assess in vitro cell-cell interactions and antineoplastic efficacy of certain agents to establish a treatment against GCTB.

13.
BMJ Open ; 11(8): e045190, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344672

RESUMEN

INTRODUCTION: SARS-CoV-2 infection in Mexico has caused ~2.7 million confirmed cases; around 20%-25% of health workers will be infected by the virus at their workplace, with approximately 4.4% of mortality. High infectivity of SARS-CoV-2 is related with cell entry mechanism, through the ACE receptor. SARS-CoV-2 requires transmembrane protease serine 2 to cleave its spike glycoprotein and ensure fusion of host cell and virus membrane. We propose studying prophylactic treatment with hydroxychloroquine (HCQ) and bromhexine (BHH), which have been shown to be effective in preventing SARS-CoV-2 infection progression when administered in early stages. The aim of this study is to assess the efficacy of HCQ and BHH as prophylactic treatments for SARS-CoV-2 infection in healthy health workers exposed to the virus. METHODS AND ANALYSIS: Double-blind randomised clinical trial, with parallel allocation at a 1:1 ratio with placebo, of low doses of HCQ plus BHH, for 60 days. Study groups will be defined as follows: (1) HCQ 200 mg/day+BHH 8 mg/8 hours versus (2) HCQ placebo plus BHH placebo. Primary endpoint will be efficacy of both interventions for the prevention of SARS-CoV-2 infection, determined by the risk ratio of infected personnel and the absolute risk. At least a 16% reduction in absolute risk is expected between the intervention and placebo groups; a minimum of 20% infection is expected in the placebo group. The sample size calculation estimated a total of 214 patients assigned: two groups of 107 participants each. ETHICS AND DISSEMINATION: This protocol has been approved by the local Medical Ethics Committee (National Institute of Rehabilitation 'Luis Guillermo Ibarra Ibarra', approval number INRLGII/25/20) and by the Federal Commission for Protection against Sanitary Risks (COFEPRIS, approval number 203 300 410A0058/2020). The results of the study will be submitted for publication in peer-reviewed journals and disseminated through conferences. TRIAL REGISTRATION NUMBER: NCT04340349.


Asunto(s)
Bromhexina , Tratamiento Farmacológico de COVID-19 , Método Doble Ciego , Humanos , Hidroxicloroquina/uso terapéutico , México , SARS-CoV-2 , Resultado del Tratamiento
14.
Biomed Mater ; 15(3): 035001, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31899893

RESUMEN

Blends of natural and synthetic polymers have recently attracted great attention as scaffolds for tissue engineering applications due to their favorable biological and mechanical properties. Nevertheless, phase-separation of blend components is an important challenge facing the development of electrospun homogeneous fibrillar natural-synthetic polymers scaffolds; phase-separation can produce significant detrimental effects for scaffolds fabricated by electrospinning. In the present study, blends of gelatin (Gel; natural polymer) and polycaprolactone (PCL; synthetic polymer), containing 30 and 45 wt% Gel, were prepared using acetic acid as a 'green' sole solvent to straightforwardly produce appropriate single-step Gel-PCL solutions for electrospinning. Miscibility of Gel and PCL in the scaffolds was assessed and the morphology, chemical composition and structural and solid-state properties of the scaffolds were thoroughly investigated. Results showed that the two polymers proved miscible under the single-step solution process used and that the electrospun scaffolds presented suitable properties for potential skin tissue engineering applications. Viability, metabolic activity and protein expression of human fibroblasts cultured on the Gel-PCL scaffolds were evaluated using LIVE/DEAD (calcein/ethidium homodimer), MTT-Formazan and immunocytochemistry assays, respectively. In vitro results showed that the electrospun Gel-PCL scaffolds enhanced cell viability and proliferation in comparison to PCL scaffolds. Furthermore, scaffolds allowed fibroblasts expression of extracellular matrix proteins, tropoelastin and collagen Type I, in a similar way to positive controls. Results indicated the feasibility of the single-step solution process used herein to obtain homogeneous electrospun Gel-PCL scaffolds with Gel content ≥30 wt% and potential properties to be used as scaffolds for skin tissue engineering applications for wound healing.


Asunto(s)
Fibroblastos/efectos de los fármacos , Gelatina/química , Poliésteres/química , Piel/efectos de los fármacos , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Supervivencia Celular , Colágeno Tipo I/metabolismo , Conductividad Eléctrica , Matriz Extracelular/metabolismo , Calor , Humanos , Concentración de Iones de Hidrógeno , Polímeros/química , Piel/metabolismo , Solventes/química , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Resistencia a la Tracción , Termogravimetría , Ingeniería de Tejidos/métodos , Tropoelastina/química , Viscosidad , Cicatrización de Heridas , Difracción de Rayos X
15.
Biomed Mater ; 15(3): 035006, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31995538

RESUMEN

The bacterial colonization of absorbable membranes used for guided tissue regeneration (GTR), as well as their rapid degradation that can cause their rupture, are considered the major reasons for clinical failure. To address this, composite membranes of polycaprolactone (PCL) and gelatin (Gel) loaded with zinc oxide nanoparticles (ZnO-NPs; 1, 3 and 6 wt% relative to PCL content) were fabricated by electrospinning. To fabricate homogeneous fibrillar membranes, acetic acid was used as a sole common solvent to enhance the miscibility of PCL and Gel in the electrospinning solutions. The effects of ZnO-NPs in the physico-chemical, mechanical and in vitro biological properties of composite membranes were studied. The composite membranes showed adequate mechanical properties to offer a satisfactory clinical manipulation and an excellent conformability to the defect site while their degradation rate seemed to be appropriate to allow successful regeneration of periodontal defects. The presence of ZnO-NPs in the composite membranes significantly decreased the planktonic and the biofilm growth of the Staphylococcus aureus over time. Finally, the viability of human osteoblasts and human gingival fibroblasts exposed to the composite membranes with 1 and 3 wt% of ZnO-NPs indicated that those membranes are not expected to negatively influence the ability of periodontal cells to repopulate the defect site during GTR treatments. The results here obtained suggest that composite membranes of PCL and Gel loaded with ZnO-NPs have the potential to be used as structurally stable GTR membranes with local antibacterial properties intended for enhancing clinical treatments.


Asunto(s)
Regeneración Tisular Dirigida/métodos , Nanopartículas del Metal/química , Staphylococcus aureus/efectos de los fármacos , Ingeniería de Tejidos/métodos , Óxido de Zinc/química , Antibacterianos/farmacología , Supervivencia Celular , Fibroblastos/efectos de los fármacos , Gelatina/química , Encía/efectos de los fármacos , Encía/metabolismo , Humanos , Membranas Artificiales , Pruebas de Sensibilidad Microbiana , Nanotecnología/métodos , Osteoblastos/efectos de los fármacos , Poliésteres/química , Staphylococcus aureus/metabolismo , Resistencia a la Tracción , Termogravimetría
16.
Carbohydr Polym ; 192: 84-94, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29691038

RESUMEN

Chitosan, sodium alginate and gel of Aloe vera (Aloe barbadensis Miller) were employed for the preparation of polyelectrolyte complexes at pH 4 and 6. FT-IR spectroscopy analysis showed evidence on complexes formation and incorporation of the Aloe vera gel. The ζ potential determination of the polyelectrolyte complexes revealed the presence of surface charges in the range of -20 to -24 mV, which results in stable systems. The dynamic moduli exhibited a high dependence on angular frequency, which is commonly found in solutions of macromolecules. The materials showed human fibroblast and lymphocyte viabilities up to 90% in agreement with null cytotoxicity. The polyelectrolyte complexes at pH 6 with Ca2+ were stable, showed high water absorption, satisfactory morphology, pore size and rigidity, characteristics that allowed significant human fibroblast migration in wound closure in vitro assays.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/citología , Linfocitos/citología , Polielectrolitos/química , Polielectrolitos/farmacología , Alginatos/química , Aloe/química , Quitosano/química , Fibroblastos/efectos de los fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Linfocitos/efectos de los fármacos , Reología
18.
J Biomed Mater Res A ; 105(2): 498-509, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27706917

RESUMEN

Human mesenchymal stem cells (MSCs) showed larger differentiation into osteoblasts on nanoscale amorphous titanium oxide (TiO2 ) coatings in comparison to polycrystalline TiO2 coatings or native oxide layers. In this article, we showed that the subtle alterations in the surface properties due to a different atomic ordering of titanium oxide layers could substantially modify the osteoblastic differentiation of MSCs. Amorphous (a) and polycrystalline (c) TiO2 coatings were deposited on smooth (PT) and microstructured sandblasted/acid-etched (SLA) Ti substrates using a magnetron sputtering system. The surface roughness, water contact angle, structure, and composition were measured using confocal microscopy, drop sessile drop, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The ∼70-nm-thick coatings presented a well-passivated and uniform TiO2 (Ti4+ ) surface composition, while the substrates (native oxide layer) showed the presence of Ti atoms in lower valence states. The polycrystalline TiO2 -coated surfaces (cPT and cSLA) showed the same cell attachment as the uncoated metallic surfaces (PT and SLA), and in both cases, it was lower on the rough than on the smooth surfaces. However, attachment and differentiation were significantly increased on the amorphous TiO2 -coated surfaces (aPT and aSLA). The amorphous coated Ti surfaces presented the highest expression of integrins and production of osteogenic proteins in comparison to the uncoated and crystalline-coated Ti surfaces. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 498-509, 2017.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Titanio , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Propiedades de Superficie , Titanio/química , Titanio/farmacología
19.
J Biomed Mater Res A ; 105(10): 2875-2891, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28589667

RESUMEN

Autologous skin transplantation is today's "gold standard" treatment for full-thickness burns. However, when > 30% of total body surface area is damaged, there is an important shortage of autologous donor sites for skin grafting; then, treatment alternatives become crucial. Such alternatives can be based on polymeric scaffolds capable of functioning as protective covers and cells/factors carriers. Chitosan (CTS) is a natural-derived polymer with relevant biological-related properties but poor mechanical performance. Improved mechanical properties can be achieved through lactic acid grafting (LA-g); nevertheless, LA-g affects the biological response towards the CTS-based materials. In this work, CTS-LA scaffolds with different LA-g percentages were synthesized and evaluated to determine appropriate LA-g degrees for full-thickness burns treatment. In vitro results indicated that the higher the LA-g percentage, the lower the capability of the scaffolds to sustain fibroblasts culture. Scaffolds with LA-g around 28% (CTS-LA28) sustained cell culture and allowed normal cell functionality. Further evaluation of CTS-LA28 as acellular and cellular grafts in a full-thickness burn mouse model showed that at 28 days post-burn, macroscopic characteristic of the reparation tissue were closer to healthy skin when cellular grafts were used for treatment; histological evaluation also showed that dermis cellularity and collagenous fibers structure were similar to those in healthy skin when cellular grafts were used for burns treatment. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2875-2891, 2017.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Quemaduras/terapia , Quitosano/uso terapéutico , Ácido Láctico/uso terapéutico , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Quemaduras/patología , Células Cultivadas , Quitosano/química , Fibroblastos/citología , Fibroblastos/patología , Humanos , Ácido Láctico/química , Masculino , Ratones , Ratones Desnudos , Piel/patología , Cicatrización de Heridas
20.
Mater Sci Eng C Mater Biol Appl ; 57: 88-99, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26354243

RESUMEN

Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 µm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 µm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion.


Asunto(s)
Adhesión Bacteriana/fisiología , Materiales Biocompatibles Revestidos/química , Escherichia coli/fisiología , Staphylococcus aureus/fisiología , Titanio/química , Circonio/química , Biopelículas/crecimiento & desarrollo , Cristalización , Escherichia coli/citología , Ensayo de Materiales , Staphylococcus aureus/citología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA