Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proteins ; 91(2): 218-236, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36114781

RESUMEN

ß-glucosidases play a pivotal role in second-generation biofuel (2G-biofuel) production. For this application, thermostable enzymes are essential due to the denaturing conditions on the bioreactors. Random amino acid substitutions have originated new thermostable ß-glucosidases, but without a clear understanding of their molecular mechanisms. Here, we probe by different molecular dynamics simulation approaches with distinct force fields and submitting the results to various computational analyses, the molecular bases of the thermostabilization of the Paenibacillus polymyxa GH1 ß-glucosidase by two-point mutations E96K (TR1) and M416I (TR2). Equilibrium molecular dynamic simulations (eMD) at different temperatures, principal component analysis (PCA), virtual docking, metadynamics (MetaDy), accelerated molecular dynamics (aMD), Poisson-Boltzmann surface analysis, grid inhomogeneous solvation theory and colony method estimation of conformational entropy allow to converge to the idea that the stabilization carried by both substitutions depend on different contributions of three classic mechanisms: (i) electrostatic surface stabilization; (ii) efficient isolation of the hydrophobic core from the solvent, with energetic advantages at the solvation cap; (iii) higher distribution of the protein dynamics at the mobile active site loops than at the protein core, with functional and entropic advantages. Mechanisms i and ii predominate for TR1, while in TR2, mechanism iii is dominant. Loop A integrity and loops A, C, D, and E dynamics play critical roles in such mechanisms. Comparison of the dynamic and topological changes observed between the thermostable mutants and the wildtype protein with amino acid co-evolutive networks and thermostabilizing hotspots from the literature allow inferring that the mechanisms here recovered can be related to the thermostability obtained by different substitutions along the whole family GH1. We hope the results and insights discussed here can be helpful for future rational approaches to the engineering of optimized ß-glucosidases for 2G-biofuel production for industry, biotechnology, and science.


Asunto(s)
Biocombustibles , beta-Glucosidasa , beta-Glucosidasa/genética , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Sustitución de Aminoácidos , Simulación de Dinámica Molecular , Dominio Catalítico
2.
Molecules ; 24(18)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487855

RESUMEN

ß-Glucosidases are enzymes with high importance for many industrial processes, catalyzing the last and limiting step of the conversion of lignocellulosic material into fermentable sugars for biofuel production. However, ß-glucosidases are inhibited by high concentrations of the product (glucose), which limits the biofuel production on an industrial scale. For this reason, the structural mechanisms of tolerance to product inhibition have been the target of several studies. In this study, we performed in silico experiments, such as molecular dynamics (MD) simulations, free energy landscape (FEL) estimate, Poisson-Boltzmann surface area (PBSA), and grid inhomogeneous solvation theory (GIST) seeking a better understanding of the glucose tolerance and inhibition mechanisms of a representative GH1 ß-glucosidase and a GH3 one. Our results suggest that the hydrophobic residues Y180, W350, and F349, as well the polar one D238 act in a mechanism for glucose releasing, herein called "slingshot mechanism", dependent also on an allosteric channel (AC). In addition, water activity modulation and the protein loop motions suggest that GH1 ß-Glucosidases present an active site more adapted to glucose withdrawal than GH3, in consonance with the GH1s lower product inhibition. The results presented here provide directions on the understanding of the molecular mechanisms governing inhibition and tolerance to the product in ß-glucosidases and can be useful for the rational design of optimized enzymes for industrial interests.


Asunto(s)
Glucosa/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , beta-Glucosidasa/química , Aminoácidos , Dominio Catalítico , Glucosa/metabolismo , Cinética , Ligandos , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , beta-Glucosidasa/metabolismo
3.
Sci Rep ; 13(1): 4598, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944648

RESUMEN

Essential oils (EOs) are a promising source for novel environmentally safe insecticides. However, the structural diversity of their compounds poses challenges to accurately elucidate their biological mechanisms of action. We present a new chemoinformatics methodology aimed at predicting the impact of essential oil (EO) compounds on the molecular targets of commercial insecticides. Our approach merges virtual screening, chemoinformatics, and machine learning to identify custom signatures and reference molecule clusters. By assigning a molecule to a cluster, we can determine its most likely interaction targets. Our findings reveal that the main targets of EOs are juvenile hormone-specific proteins (JHBP and MET) and octopamine receptor agonists (OctpRago). Three of the twenty clusters show strong similarities to the juvenile hormone, steroids, and biogenic amines. For instance, the methodology successfully identified E-Nerolidol, for which literature points indications of disrupting insect metamorphosis and neurochemistry, as a potential insecticide in these pathways. We validated the predictions through experimental bioassays, observing symptoms in blowflies that were consistent with the computational results. This new approach sheds a higher light on the ways of action of EO compounds in nature and biotechnology. It also opens new possibilities for understanding how molecules can interfere with biological systems and has broad implications for areas such as drug design.


Asunto(s)
Insecticidas , Aceites Volátiles , Animales , Insecticidas/farmacología , Insecticidas/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Quimioinformática , Insectos
4.
J Biomol Struct Dyn ; 40(12): 5427-5445, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33526002

RESUMEN

Ricin is a potent toxin derived from the castor bean plant and comprises two subunits, RTA and RTB. Because of its cytotoxicity, ricin has alarmed world authorities for its potential use as a chemical weapon. Ricin also affects castor bean agribusiness, given the risk of animal and human poisoning. Over the years, many groups attempted to propose small-molecules that bind to the RTA active site, the catalytic chain. Despite such efforts, there is still no effective countermeasure against ricin poisoning. The computational study carried out in the present work renews the discussion about small-molecules that may inhibit this toxin. Here, a structure-based virtual screening protocol capable of discerning active RTA inhibitors from inactive ones was performed to screen over 2 million compounds from the ZINC database to find novel scaffolds that strongly bind into the active site of the RTA. Besides, a novel score method based on ligand undocking force profiles and semi-empirical quantum chemical calculations provided insights into the rescore of docking poses. Summing up, the filtering steps pointed out seven main compounds, with the SCF00-451 as a promising candidate to inhibit the killing activity of such potent phytotoxin.


Asunto(s)
Ricina , Toxinas Biológicas , Animales , Humanos , Ligandos , Simulación de Dinámica Molecular , Ricina/química , Ricina/metabolismo , Ricina/farmacología
5.
Genet Mol Res ; 5(2): 284-308, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16819709

RESUMEN

We modeled the problem of identifying how close two proteins are structurally by measuring the dissimilarity of their contact maps. These contact maps are colored images, in which the chromatic information encodes the chemical nature of the contacts. We studied two conceptually distinct image-processing algorithms to measure the dissimilarity between these contact maps; one was a content-based image retrieval method, and the other was based on image registration. In experiments with contact maps constructed from the protein data bank, our approach was able to identify, with greater than 80% precision, instances of monomers of apolipoproteins, globins, plastocyanins, retinol binding proteins and thioredoxins, among the monomers of Protein Data Bank Select. The image registration approach was only slightly more accurate than the content-based image retrieval approach.


Asunto(s)
Algoritmos , Simulación por Computador , Modelos Químicos , Conformación Proteica , Proteínas/química , Alineación de Secuencia/métodos , Modelos Moleculares , Análisis de Secuencia de Proteína , Relación Estructura-Actividad
6.
PLoS One ; 9(2): e89162, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586563

RESUMEN

The volume and diversity of biological data are increasing at very high rates. Vast amounts of protein sequences and structures, protein and genetic interactions and phenotype studies have been produced. The majority of data generated by high-throughput devices is automatically annotated because manually annotating them is not possible. Thus, efficient and precise automatic annotation methods are required to ensure the quality and reliability of both the biological data and associated annotations. We proposed ENZYMatic Annotation Predictor (ENZYMAP), a technique to characterize and predict EC number changes based on annotations from UniProt/Swiss-Prot using a supervised learning approach. We evaluated ENZYMAP experimentally, using test data sets from both UniProt/Swiss-Prot and UniProt/TrEMBL, and showed that predicting EC changes using selected types of annotation is possible. Finally, we compared ENZYMAP and DETECT with respect to their predictions and checked both against the UniProt/Swiss-Prot annotations. ENZYMAP was shown to be more accurate than DETECT, coming closer to the actual changes in UniProt/Swiss-Prot. Our proposal is intended to be an automatic complementary method (that can be used together with other techniques like the ones based on protein sequence and structure) that helps to improve the quality and reliability of enzyme annotations over time, suggesting possible corrections, anticipating annotation changes and propagating the implicit knowledge for the whole dataset.


Asunto(s)
Bases de Datos de Proteínas , Enzimas , Anotación de Secuencia Molecular/métodos , Programas Informáticos , Animales , Biología Computacional/métodos , Enzimas/química , Enzimas/metabolismo , Predicción , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA