Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(5): 998-1012.e8, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37116499

RESUMEN

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.


Asunto(s)
Dermatitis , Metotrexato , Ratones , Animales , Metotrexato/farmacología , Inflamación , Peptidoglicano/metabolismo , Células Epiteliales/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Inmunidad Innata , Mamíferos
2.
Cell ; 169(2): 188-190, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388404

RESUMEN

For decades, flies have been a model for innate immunity. In this issue of Cell, Tassetto et al. describe a mechanism for antiviral RNAi spreading that parallels mammalian adaptive immunity through reverse-transcribed vDNA circles and the systemic dissemination of small-RNA-containing exosomes.


Asunto(s)
Inmunidad Adaptativa , Interferencia de ARN , Animales , Humanos , Inmunidad Innata/genética
3.
Cell ; 164(3): 406-19, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824654

RESUMEN

The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings.


Asunto(s)
Drosophila melanogaster/inmunología , Inmunidad Innata , Transducción de Señal , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Escherichia coli/fisiología , Cuerpo Adiposo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/metabolismo , Masculino , Pectobacterium carotovorum/fisiología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Staphylococcus aureus/fisiología , Receptores Toll-Like/metabolismo
4.
Nat Immunol ; 17(8): 922-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27270400

RESUMEN

Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages that were deficient in GGTase I or p110δ exhibited constitutive release of interleukin 1ß that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Fiebre Mediterránea Familiar/metabolismo , Inflamasomas/metabolismo , Macrófagos/fisiología , Mutación/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Pirina/genética , Transferasas Alquil y Aril/genética , Animales , Células Cultivadas , Fiebre Mediterránea Familiar/genética , Humanos , Inmunidad Innata , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfatos de Poliisoprenilo/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Receptores Toll-Like/metabolismo
5.
Immunity ; 49(2): 225-234.e4, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30119996

RESUMEN

Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKß and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKß and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKß to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/virología , Quinasa I-kappa B/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Infecciones por Picornaviridae/inmunología , Animales , Línea Celular , Dicistroviridae/inmunología , Proteínas de Drosophila/genética , Quinasa I-kappa B/genética , Proteínas de la Membrana/genética , Factores de Iniciación de Péptidos/genética , Interferencia de ARN , Factores de Transcripción/metabolismo
6.
Immunity ; 47(4): 635-647.e6, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045898

RESUMEN

In the Drosophila immune response, bacterial derived diaminopimelic acid-type peptidoglycan binds the receptors PGRP-LC and PGRP-LE, which through interaction with the adaptor protein Imd leads to activation of the NF-κB homolog Relish and robust antimicrobial peptide gene expression. PGRP-LC, PGRP-LE, and Imd each contain a motif with some resemblance to the RIP Homotypic Interaction Motif (RHIM), a domain found in mammalian RIPK proteins forming functional amyloids during necroptosis. Here we found that despite sequence divergence, these Drosophila cryptic RHIMs formed amyloid fibrils in vitro and in cells. Amyloid formation was required for signaling downstream of Imd, and in contrast to the mammalian RHIMs, was not associated with cell death. Furthermore, amyloid formation constituted a regulatable step and could be inhibited by Pirk, an endogenous feedback regulator of this pathway. Thus, diverse sequence motifs are capable of forming amyloidal signaling platforms, and the formation of these platforms may present a regulatory point in multiple biological processes.


Asunto(s)
Amiloide/inmunología , Proteínas Portadoras/inmunología , Proteínas de Drosophila/inmunología , FN-kappa B/inmunología , Receptores de Superficie Celular/inmunología , Transducción de Señal/inmunología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/inmunología , Secuencia de Aminoácidos , Amiloide/metabolismo , Animales , Sitios de Unión/genética , Sitios de Unión/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Femenino , Expresión Génica/inmunología , Masculino , Microscopía Confocal , Modelos Inmunológicos , Mutación , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
7.
Immunity ; 45(5): 951-953, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851920

RESUMEN

Contradictory to previous reports, Iatsenko et al. (2016) reveal that PGRP-SD regulates the Imd signaling pathway rather than the Toll pathway in Drosophila and shed light on a decade-old mystery of conflicting structural and phenotypic data.


Asunto(s)
Proteínas Portadoras/química , Inmunidad Innata/inmunología , Animales , Drosophila/inmunología , Proteínas de Drosophila/química , Transducción de Señal
10.
PLoS Pathog ; 14(5): e1007020, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29746571

RESUMEN

The fruit fly Drosophila melanogaster is a powerful model system for the study of innate immunity in vector insects as well as mammals. For vector insects, it is particularly important to understand all aspects of their antiviral immune defenses, which could eventually be harnessed to control the transmission of human pathogenic viruses. The immune responses controlling RNA viruses in insects have been extensively studied, but the response to DNA virus infections is poorly characterized. Here, we report that infection of Drosophila with the DNA virus Invertebrate iridescent Virus 6 (IIV-6) triggers JAK-STAT signaling and the robust expression of the Turandots, a gene family encoding small secreted proteins. To drive JAK-STAT signaling, IIV-6 infection more immediately induced expression of the unpaireds, a family of IL-6-related cytokine genes, via a pathway that required one of the three Drosophila p38 homologs, p38b. In fact, both Stat92E and p38b were required for the survival of IIV-6 infected flies. In addition, in vitro induction of the unpaireds required an NADPH-oxidase, and in vivo studies demonstrated Nox was required for induction of TotA. These results argue that ROS production, triggered by IIV-6 infection, leads to p38b activation and unpaired expression, and subsequent JAK-STAT signaling, which ultimately protects the fly from IIV-6 infection.


Asunto(s)
Drosophila melanogaster/inmunología , Drosophila melanogaster/virología , Iridovirus/patogenicidad , Transducción de Señal/inmunología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Iridovirus/inmunología , Quinasas Janus/genética , Quinasas Janus/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/genética , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Nat Immunol ; 9(8): 908-16, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18604211

RESUMEN

Autophagy, an evolutionally conserved homeostatic process for catabolizing cytoplasmic components, has been linked to the elimination of intracellular pathogens during mammalian innate immune responses. However, the mechanisms underlying cytoplasmic infection-induced autophagy and the function of autophagy in host survival after infection with intracellular pathogens remain unknown. Here we report that in drosophila, recognition of diaminopimelic acid-type peptidoglycan by the pattern-recognition receptor PGRP-LE was crucial for the induction of autophagy and that autophagy prevented the intracellular growth of Listeria monocytogenes and promoted host survival after this infection. Autophagy induction occurred independently of the Toll and IMD innate signaling pathways. Our findings define a pathway leading from the intracellular pattern-recognition receptors to the induction of autophagy to host defense.


Asunto(s)
Autofagia , Drosophila/inmunología , Drosophila/metabolismo , Inmunidad Innata/inmunología , Listeria/inmunología , Peptidoglicano/metabolismo , Animales , Ácido Diaminopimélico , Drosophila/genética , Drosophila/crecimiento & desarrollo , Listeria/citología , Peptidoglicano/inmunología , Receptores Toll-Like/inmunología
12.
Immunity ; 35(4): 536-49, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22018470

RESUMEN

Although infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases. CNF1 modified Rac2, which then interacted with the innate immune adaptors IMD and Rip1-Rip2 in flies and mammalian cells, respectively, to drive an immune response. This response was protective and increased the ability of the host to restrict pathogen growth, thus defining a mechanism of effector-triggered immunity that contributes to how metazoans defend against microbes with pathogenic potential.


Asunto(s)
Transducción de Señal , Proteínas de Unión al GTP rac/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteína RCA2 de Unión a GTP
13.
J Immunol ; 199(1): 263-270, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28539433

RESUMEN

Tracheal cytotoxin (TCT), a monomer of DAP-type peptidoglycan from Bordetella pertussis, causes cytopathology in the respiratory epithelia of mammals and robustly triggers the Drosophila Imd pathway. PGRP-LE, a cytosolic innate immune sensor in Drosophila, directly recognizes TCT and triggers the Imd pathway, yet the mechanisms by which TCT accesses the cytosol are poorly understood. In this study, we report that CG8046, a Drosophila SLC46 family transporter, is a novel transporter facilitating cytosolic recognition of TCT, and plays a crucial role in protecting flies against systemic Escherichia coli infection. In addition, mammalian SLC46A2s promote TCT-triggered NOD1 activation in human epithelial cell lines, indicating that SLC46As is a conserved group of peptidoglycan transporter contributing to cytosolic immune recognition.


Asunto(s)
Citosol/inmunología , Proteínas de Drosophila/metabolismo , Inmunidad Innata , Peptidoglicano/inmunología , Simportadores/metabolismo , Factores de Virulencia de Bordetella/inmunología , Animales , Línea Celular , Pared Celular/inmunología , Pared Celular/metabolismo , Citosol/metabolismo , Drosophila/inmunología , Drosophila/microbiología , Escherichia coli/fisiología , Células HEK293 , Humanos , Peptidoglicano/química , Peptidoglicano/metabolismo , Transducción de Señal , Factores de Virulencia de Bordetella/química , Factores de Virulencia de Bordetella/metabolismo
14.
BMC Biol ; 16(1): 60, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855367

RESUMEN

BACKGROUND: Drosophila is a powerful model for the study of factors modulating innate immunity. This study examines the effect of water-loss dehydration on innate immune responsiveness in the Drosophila renal system (Malpighian tubules; MTs), and how this leads to elevated host defense and contributes to immunosenescence. RESULTS: A short period of desiccation-elevated peptidoglycan recognition protein-LC (PGRP-LC) expression in MTs, increased antimicrobial peptide (AMP) gene induction, and protected animals from bacterial infection. We show that desiccation increased ecdysone synthesis in MTs, while inhibition of ecdysone synthesis or ecdysone receptor expression, specifically within MTs, prevented induction of PGRP-LC and reduced protection from bacterial infection. Additionally, aged flies are constitutively water-stressed and have elevated levels of ecdysone and PGRP-LC. Conversely, adults aged at high relative humidity show less water loss and have reduced expression of PGRP-LC and AMPs. CONCLUSIONS: The Drosophila renal system is an important contributor to host defense and can modulate immune responses in an organ autonomous manner, responding to environmental changes such as desiccation. Desiccation primes immune responsiveness by elevating PGRP-LC expression specifically in MTs. In response to desiccation, ecdysone is produced in MTs and acts in a paracrine fashion to increase PGRP-LC expression, immune responsiveness, and improve host defense. This activity of the renal system may contribute to the immunosenescence observed in Drosophila.


Asunto(s)
Infecciones Bacterianas/inmunología , Proteínas Portadoras/metabolismo , Deshidratación/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Ecdisona/metabolismo , Inmunidad Innata , Túbulos de Malpighi/inmunología , Animales , Drosophila melanogaster/microbiología , Modelos Animales , Receptores de Esteroides/metabolismo , Transducción de Señal
15.
J Biol Chem ; 292(21): 8738-8749, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28377500

RESUMEN

Coordinated regulation of innate immune responses is necessary in all metazoans. In Drosophila the Imd pathway detects Gram-negative bacterial infections through recognition of diaminopimelic acid (DAP)-type peptidoglycan and activation of the NF-κB precursor Relish, which drives robust antimicrobial peptide gene expression. Imd is a receptor-proximal adaptor protein homologous to mammalian RIP1 that is regulated by proteolytic cleavage and Lys-63-polyubiquitination. However, the precise events and molecular mechanisms that control the post-translational modification of Imd remain unclear. Here, we demonstrate that Imd is rapidly Lys-63-polyubiquitinated at lysine residues 137 and 153 by the sequential action of two E2 enzymes, Ubc5 and Ubc13-Uev1a, in conjunction with the E3 ligase Diap2. Lys-63-ubiquitination activates the TGFß-activated kinase (Tak1), which feeds back to phosphorylate Imd, triggering the removal of Lys-63 chains and the addition of Lys-48 polyubiquitin. This ubiquitin-editing process results in the proteasomal degradation of Imd, which we propose functions to restore homeostasis to the Drosophila immune response.


Asunto(s)
Proteínas de Drosophila/inmunología , Inmunidad Innata , Quinasas Quinasa Quinasa PAM/inmunología , Transducción de Señal/inmunología , Ubiquitinación/inmunología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/inmunología , Quinasas Quinasa Quinasa PAM/genética , Poliubiquitina/genética , Poliubiquitina/inmunología , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/inmunología , Ubiquitinación/genética
16.
PLoS Pathog ; 12(6): e1005669, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27280707

RESUMEN

Leishmania amastigotes manipulate the activity of macrophages to favor their own success. However, very little is known about the role of innate recognition and signaling triggered by amastigotes in this host-parasite interaction. In this work we developed a new infection model in adult Drosophila to take advantage of its superior genetic resources to identify novel host factors limiting Leishmania amazonensis infection. The model is based on the capacity of macrophage-like cells, plasmatocytes, to phagocytose and control the proliferation of parasites injected into adult flies. Using this model, we screened a collection of RNAi-expressing flies for anti-Leishmania defense factors. Notably, we found three CD36-like scavenger receptors that were important for defending against Leishmania infection. Mechanistic studies in mouse macrophages showed that CD36 accumulates specifically at sites where the parasite contacts the parasitophorous vacuole membrane. Furthermore, CD36-deficient macrophages were defective in the formation of the large parasitophorous vacuole typical of L. amazonensis infection, a phenotype caused by inefficient fusion with late endosomes and/or lysosomes. These data identify an unprecedented role for CD36 in the biogenesis of the parasitophorous vacuole and further highlight the utility of Drosophila as a model system for dissecting innate immune responses to infection.


Asunto(s)
Antígenos CD36/inmunología , Endocitosis/fisiología , Interacciones Huésped-Parásitos/fisiología , Leishmaniasis/inmunología , Macrófagos/microbiología , Animales , Antígenos CD36/metabolismo , Modelos Animales de Enfermedad , Drosophila , Inmunidad Innata/inmunología , Leishmania mexicana/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Confocal , Reacción en Cadena de la Polimerasa , Vacuolas
18.
Mol Cell ; 37(2): 172-82, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122400

RESUMEN

Innate immune responses are critical for the immediate protection against microbial infection. In Drosophila, infection leads to the rapid and robust production of antimicrobial peptides through two NF-kappaB signaling pathways-IMD and Toll. The IMD pathway is triggered by DAP-type peptidoglycan, common to most Gram-negative bacteria. Signaling downstream from the peptidoglycan receptors is thought to involve K63 ubiquitination and caspase-mediated cleavage, but the molecular mechanisms remain obscure. We now show that PGN stimulation causes caspase-mediated cleavage of the imd protein, exposing a highly conserved IAP-binding motif (IBM) at its neo-N terminus. A functional IBM is required for the association of cleaved IMD with the ubiquitin E3-ligase DIAP2. Through its association with DIAP2, IMD is rapidly conjugated with K63-linked polyubiquitin chains. These results mechanistically connect caspase-mediated cleavage and K63 ubiquitination in immune-induced NF-kappaB signaling.


Asunto(s)
Caspasas/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/enzimología , FN-kappa B/metabolismo , Transducción de Señal , Alelos , Secuencias de Aminoácidos , Animales , Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Alineación de Secuencia , Ubiquitina-Proteína Ligasas , Ubiquitinación
19.
EMBO J ; 32(11): 1626-38, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23652443

RESUMEN

Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.


Asunto(s)
Proteínas Portadoras/metabolismo , Drosophila/inmunología , Ecdisona/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Animales , Proteínas Portadoras/genética , Línea Celular , Drosophila/genética , Drosophila/microbiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterobacter cloacae/fisiología , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Inmunidad Innata , Estimación de Kaplan-Meier , Modelos Moleculares , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Pectobacterium carotovorum/fisiología , Interferencia de ARN , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(20): 7391-6, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799678

RESUMEN

A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the "Black Death" in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis, dependent upon type III secretion system effector Yersinia outer protein J (YopJ), is minimally affected by the absence of caspase-1, caspase-11, Fas ligand, and TNF. Caspase-8 is known to mediate apoptotic death in response to infection with several viruses and to regulate programmed necrosis (necroptosis), but its role in bacterially induced cell death is poorly understood. Here we provide genetic evidence for a receptor-interacting protein (RIP) kinase-caspase-8-dependent macrophage apoptotic death pathway after infection with Y. pestis, influenced by Toll-like receptor 4-TIR-domain-containing adapter-inducing interferon-ß (TLR4-TRIF). Interestingly, macrophages lacking either RIP1, or caspase-8 and RIP3, also had reduced infection-induced production of IL-1ß, IL-18, TNF, and IL-6; impaired activation of the transcription factor NF-κB; and greatly compromised caspase-1 processing. Cleavage of the proform of caspase-1 is associated with triggering inflammasome activity, which leads to the maturation of IL-1ß and IL-18, cytokines important to host responses against Y. pestis and many other infectious agents. Our results identify a RIP1-caspase-8/RIP3-dependent caspase-1 activation pathway after Y. pestis challenge. Mice defective in caspase-8 and RIP3 were also highly susceptible to infection and displayed reduced proinflammatory cytokines and myeloid cell death. We propose that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-κB and inflammasome activation, and host resistance after Y. pestis infection.


Asunto(s)
Caspasa 8/metabolismo , Muerte Celular , Inmunidad Innata , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis , Proteínas Bacterianas/genética , Células de la Médula Ósea/citología , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Yersiniosis/microbiología , Yersinia pestis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA