RESUMEN
Glioblastoma (GBM) is a lethal brain cancer with no effective treatment; understanding how GBM cells respond to tumor microenvironment remains challenging as conventional cell cultures lack proper cytoarchitecture while in vivo animal models present complexity all at once. Developing a culture system to bridge the gap is thus crucial. Here, we employed a multicellular approach using human glia and vascular cells to optimize a 3-dimensional (3D) brain vascular niche model that enabled not only long-term culture of patient derived GBM cells but also recapitulation of key features of GBM heterogeneity, in particular invasion behavior and vascular association. Comparative transcriptomics of identical patient derived GBM cells in 3D and in vivo xenotransplants models revealed that glia-vascular contact induced genes concerning neural/glia development, synaptic regulation, as well as immune suppression. This gene signature displayed region specific enrichment in the leading edge and microvascular proliferation zones in human GBM and predicted poor prognosis. Gene variance analysis also uncovered histone demethylation and xylosyltransferase activity as main themes for gene adaption of GBM cells in vivo . Furthermore, our 3D model also demonstrated the capacity to provide a quiescence and a protective niche against chemotherapy. In summary, an advanced 3D brain vascular model can bridge the gap between 2D cultures and in vivo models in capturing key features of GBM heterogeneity and unveil previously unrecognized influence of glia-vascular contact for transcriptional adaption in GBM cells featuring neural/synaptic interaction and immunosuppression.
RESUMEN
The bulk flow of interstitial fluid through tissue is an important factor in human biology, including the development of brain microvascular networks (MVNs) with the blood-brain barrier (BBB). Bioengineering perfused, functional brain MVNs has great potential for modeling neurovascular diseases and drug delivery. However, most in vitro models of brain MVNs do not implement interstitial flow during the generation of microvessels. Using a microfluidic device (MFD), we cultured primary human brain endothelial cells (BECs), pericytes, and astrocytes within a 3D fibrin matrix with (flow) and without (static) interstitial flow. We found that the bulk flow of interstitial fluid was beneficial for both BEC angiogenesis and vasculogenesis. Brain MVNs cultured under flow conditions achieved anastomosis and were perfusable, whereas those under static conditions lacked connectivity and the ability to be perfused. Compared to static culture, microvessels developed in flow culture exhibited an enhanced vessel area, branch length and diameter, connectivity, and longevity. Although there was no change in pericyte coverage of microvessels, a slight increase in astrocyte coverage was observed under flow conditions. In addition, the immunofluorescence intensity of basal lamina proteins, collagen IV and laminin, was nearly doubled in flow culture. Lastly, the barrier function of brain microvessels was enhanced under flow conditions, as demonstrated by decreased dextran permeability. Taken together, these results highlighted the importance of interstitial flow in the in vitro generation of perfused brain MVNs with characteristics similar to those of the human BBB.
Asunto(s)
Células Endoteliales , Dispositivos Laboratorio en un Chip , Barrera Hematoencefálica , Encéfalo , Células Cultivadas , Humanos , Microvasos , PericitosRESUMEN
Glioblastoma multiforme (GBM) is a highly lethal and elusive cancer. While many in vitro and in vivo models have been developed to recapitulate the factors that contribute to its invasive behavior, they suffer from drawbacks related to genetic variability, expense and scope. Technologies utilizing human pluripotent stem cells can now generate organoids which can recapitulate the relative complexity the cytoarchitecture and microenvironment of human brain tissue. In conjunction with protocols which effectively induce GBM tumors within these "cerebral organoids", such approaches represent an unprecedented model to investigate GBM invasion and its effect on the brain ECM. This review focuses on methods of brain organoid development, protocols for inducing GBM, the relevant findings on invasion and microenvironmental changes, and discusses their limitations and potential future direction.
RESUMEN
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified "collinear point target" phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration.