Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 949: 175007, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053557

RESUMEN

Nanoplastics (NPs), plastic particles ranging from 1 to 100 nm are ubiquitous environmental pollutants infiltrating ecosystems. Their small size and widespread use in various products raise concerns for human health, particularly their association with cardiovascular diseases (CVD). NPs can enter the human body through multiple routes, causing oxidative stress, and leading to the senescence and dysfunction of endothelial cells (ECs). Although there are potential natural compounds for treating CVD, there is limited research on preventing CVD induced by NPs. This study investigates the efficacy of Ecklonia cava extract (ECE) in preventing NPs-induced premature vascular senescence and dysfunction. Exposure of porcine coronary arteries (PCAs) and porcine coronary ECs to NPs, either alone or in combination with ECE, demonstrated that ECE mitigates senescence-associated ß-galactosidase (SA-ß-gal) activity induced by NPs, thus preventing premature endothelial senescence. ECE also improved NPs-induced vascular dysfunction. The identified active ingredient in Ecklonia cava, 2,7'-Phloroglucinol-6,6'-bieckol (PHB), a phlorotannin, proved to be pivotal in these protective effects. PHB treatment ameliorated SA-ß-gal activity, reduced oxidative stress, restored cell proliferation, and decreased the expression of cell cycle regulatory proteins such as p53, p21, p16, and angiotensin type 1 receptor (AT1), well known triggers for EC senescence. Moreover, PHB also improved NPs-induced vascular dysfunction by upregulating endothelial nitric oxide synthase (eNOS) expression and restoring endothelium-dependent vasorelaxation. In conclusion, Ecklonia cava and its active ingredient, PHB, exhibit potential as therapeutic agents against NPs-induced premature EC senescence and dysfunction, indicating a protective effect against environmental pollutants-induced CVDs associated with vascular dysfunction.


Asunto(s)
Senescencia Celular , Dioxinas , Phaeophyceae , Senescencia Celular/efectos de los fármacos , Animales , Porcinos , Células Endoteliales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Floroglucinol/farmacología , Floroglucinol/análogos & derivados , Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA