Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569451

RESUMEN

Coronary artery disease (CAD) is a leading cause of mortality worldwide. In this study, we aimed to assess the potential of plasma long non-coding RNAs (lncRNAs) LIPCAR and MALAT1 and microRNAs (miRNAs) miR-142-3p and miR-155-5p to discriminate unstable CAD patients from stable ones. 23 stable angina (SA), 21 unstable angina (UA), and 50 ST-segment elevation myocardial infarction (STEMI) patients were enrolled; their plasma was collected. ncRNA plasma levels were evaluated using RT-qPCR. All measured ncRNA levels were significantly increased in UA patients' plasma compared to SA patients' plasma and in STEMI-with major adverse cardiovascular event (MACE) patients' plasma vs. STEMI-without MACE patients' plasma. ROC analysis showed that increased levels of LIPCAR and MALAT1 were associated with UA, and the prognostic model improved with the addition of miR-155-5p levels. The assessed lncRNAs discriminated between hyperglycemic (HG) and normoglycemic (NG) UA patients, and they were associated with MACE incidence in STEMI patients; this prediction was improved by the addition of miR-142-3p levels to the ROC multivariate model. We propose LIPCAR and MALAT1 as effective diagnostic markers for vulnerable CAD, their association with HG in UA patients, and as robust predictors for unfavorable evolution of STEMI patients.


Asunto(s)
Síndrome Coronario Agudo , Enfermedad de la Arteria Coronaria , MicroARNs , ARN Largo no Codificante , Infarto del Miocardio con Elevación del ST , Humanos , Síndrome Coronario Agudo/genética , Angina Inestable/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Infarto del Miocardio con Elevación del ST/genética
2.
Mol Biol Rep ; 49(7): 6779-6788, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34410579

RESUMEN

BACKGROUND: Cardiovascular diseases are still the main cause of death worldwide. Our aim was to analyse the link between miR-223-3p levels, dysfunctional HDL and the age of patients with carotid artery stenosis (CAS). METHODS AND RESULTS: Thirty-two CAS patients enrolled for endarterectomy were divided in 2 groups: aged over 65 years (n = 19) and under 65 years (n = 13). Plasma samples and atherosclerotic plaques from the carotid artery were collected from all patients. Plaque levels of miR-223-3p and its primary transcript (pri-miR-223) were assessed, together with Drosha, Dicer, apolipoprotein (apo)A-I, apoE and myeloperoxidase (MPO) gene expression. In the plasma and plaques, miR-223-3p expression levels were significantly increased in CAS patients over 65 years. Positive correlations between plaque miR-223-3p and pri-miR-223 levels with Drosha, apoA-I and MPO expression were observed. Significantly increased miR-223-3p levels in the plasma of CAS patients over 65 years were measured. Significant correlations between plasma miR-223-3p levels and HDL-related proteins were determined. The variance of plasma miR-223-3p levels was predicted significantly by the multiple regression models using either age, clinical variables, blood lipids or oxidative and inflammatory parameters. Receiver operator characteristic analysis revealed that plasma miR-223-3p levels and HDL-related proteins (MPO activity/apoA-I ratio, MPO specific activity) were correlated with advanced age. CONCLUSIONS: Taken together, these data suggest that plasma levels of miR-223-3p are independently associated with ageing in CAS patients and that, correlated with parameters associated with dysfunctional HDL, could predict the aggravation of CAS in elderly patients.


Asunto(s)
Estenosis Carotídea , MicroARNs , Placa Aterosclerótica , Anciano , Apolipoproteína A-I/genética , Arterias Carótidas , Estenosis Carotídea/genética , Humanos , MicroARNs/metabolismo , Placa Aterosclerótica/genética
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077347

RESUMEN

Myocardial infarction is one of the leading causes of death worldwide, despite numerous efforts to find efficient prognostic biomarkers and treatment targets. In the present study, we aimed to assess the potential of six microRNAs known to be involved in cardiovascular diseases, cell-free DNA (cfDNA), and mitochondrial DNA (mtDNA) circulating in plasma to be used as prognostic tools for the occurrence of unfavorable outcomes such as major adverse cardiovascular events (MACE) after acute ST-segment elevation myocardial infarction (STEMI). Fifty STEMI patients were enrolled and monitored for 6 months for the occurrence of MACE. Plasma was collected at three time points: upon admission to hospital (T0), at discharge from hospital (T1), and 6 months post-STEMI (T6). Plasma levels of miR-223-3p, miR-142-3p, miR-155-5p, miR-486-5p, miR-125a-5p, and miR-146a-5p, as well as of cfDNA and mtDNA, were measured by RT-qPCR. Results showed that the levels of all measured miRNAs, as well as of cfDNA and mtDNA, were the most increased at T1, compared to the other two time points. In the plasma of STEMI patients with MACE compared to those without MACE, we determined increased levels of miRNAs, cfDNA, and mtDNA at T1. Hence, we used the levels of all measured parameters at T1 for further statistical analysis. Statistical analysis demonstrated that all six miRNAs and cfDNA plus mtDNA levels, respectively, were associated with MACE. The minimal statistical model that could predict MACE in STEMI patients was the combination of mtDNA and miR-142-3p levels, as evidenced by ROC analysis (AUC = 0.97, p < 0.001). In conclusion, the increased plasma levels of mtDNA, along with miR-142-3p, could be used to predict unfavorable outcomes in STEMI patients.


Asunto(s)
Ácidos Nucleicos Libres de Células , MicroARNs , Infarto del Miocardio , Infarto del Miocardio con Elevación del ST , Biomarcadores , ADN Mitocondrial/genética , Humanos , MicroARNs/genética , Infarto del Miocardio/genética
4.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339419

RESUMEN

There is an intensive effort to identify biomarkers to predict cardiovascular disease evolution. We aimed to determine the potential of microRNAs to predict the appearance of cardiovascular events (CVEs) in patients with peripheral artery disease (PAD) following femoral artery bypass surgery. Forty-seven PAD patients were enrolled and divided into two groups, without CVEs (n = 35) and with CVEs (n = 12), during 1 year follow-up. Intra-surgery atherosclerotic plaques from femoral arteries were collected and the levels of miR-142, miR-223, miR-155, and miR-92a of the primary transcripts of these microRNAs (pri-miRNAs), and gene expression of Drosha and Dicer were determined. Results showed that, in the plaques, miR-142, miR-223, and miR-155 expression levels were significantly increased in PAD patients with CVEs compared to those without CVEs. Positive correlations between these miRNAs and their pri-miRNAs levels and the Dicer/Drosha expression were observed. In the plasma of PAD patients with CVEs compared to those without CVEs, miR-223 and miR-142 were significantly increased. The multiple linear regression analyses revealed significant associations among several plasma lipids, oxidative and inflammatory parameters, and plasma miRNAs levels. Receiver operator characteristic (ROC) analysis disclosed that plasma miR-142 levels could be an independent predictor for CVEs in PAD patients. Functional bioinformatics analyses supported the role of these miRNAs in the regulation of biological processes associated with atherosclerosis. Taken together, these data suggest that plasma levels of miR-142, miR-223, miR-155, and miR-92a can significantly predict CVEs among PAD patients with good accuracy, and that plasma levels of miR-142 can be an independent biomarker to predict post-surgery CVEs development in PAD patients.


Asunto(s)
MicroARNs/sangre , Enfermedad Arterial Periférica/sangre , Placa Aterosclerótica/sangre , Complicaciones Posoperatorias/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Biomarcadores/metabolismo , Femenino , Arteria Femoral/cirugía , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/cirugía , Placa Aterosclerótica/metabolismo , Complicaciones Posoperatorias/metabolismo , Injerto Vascular/efectos adversos
5.
Mol Biol Rep ; 45(4): 497-509, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29725814

RESUMEN

In the present study we aimed to evaluate the potential of in vivo inhibition of miR-486 and miR-92a to reverse hyperlipidemia, then to identify and validate their lipid metabolism-related target genes. Male Golden-Syrian hamsters fed a hyperlipidemic (HL) diet (standard chow plus 3% cholesterol and 15% butter, 10 weeks) were injected subcutaneously with lock-nucleic acid inhibitors for either miR-486 or miR-92a. Lipids and miRNAs levels in liver and plasma, and hepatic expression of miRNAs target genes were assessed in all HL hamsters. MiR-486 and miR-92a target genes were identified by miRWalk analysis and validated by 3'UTR cloning in pmirGLO vectors. HL hamsters had increased liver (2.8-fold) and plasma (twofold) miR-486 levels, and increased miR-92a (2.8-fold and 1.8-fold, respectively) compared to normolipidemic hamsters. After 2 weeks treatment, liver and plasma cholesterol levels decreased (23 and 17.5% for anti-miR-486, 16 and 22% for miR-92a inhibition). Hepatic triglycerides and non-esterified fatty acids content decreased also significantly. Bioinformatics analysis and 3'UTR cloning in pmirGLO vector showed that sterol O-acyltransferase-2 (SOAT2) and sterol-regulatory element binding transcription factor-1 (SREBF1) are targeted by miR-486, while ATP-binding cassette G4 (ABCG4) and Niemann-Pick C1 (NPC1) by miR-92a. In HL livers and in cultured HepG2 cells, miR-486 inhibition restored the levels of SOAT2 and SREBF1 expression, while anti-miR-92a restored ABCG4, NPC1 and SOAT2 expression compared to scrambled-treated HL hamsters or cultured cells. In vivo inhibition of miR-486 and miR-92a could be a useful and valuable new approach to correct lipid metabolism dysregulation.


Asunto(s)
Colesterol/metabolismo , Hígado/metabolismo , MicroARNs/antagonistas & inhibidores , Animales , Colesterol/sangre , Biología Computacional , Cricetinae , Células Hep G2 , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hiperlipidemias/terapia , Metabolismo de los Lípidos/genética , Lípidos/sangre , Masculino , Mesocricetus , MicroARNs/genética , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/sangre , Esterol O-Aciltransferasa 2
6.
J Cell Biochem ; 118(4): 661-669, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27341688

RESUMEN

Oxidatively modified low-density lipoproteins (oxLDL) alter the proper function of the endoplasmic reticulum (ER), inducing ER stress (ERS), which consequently activates inflammatory pathways in macrophages. Matrix metalloproteinase-9 (MMP-9) is the main protease acting on the degradation of the extracellular matrix and the ensuing destabilization of the atherosclerotic plaque. We aimed to investigate whether ERS induced by oxLDL or tunicamycin (TM) in human macrophages is associated with the stimulation of MMP-9 expression and secretion. The results showed that oxLDL induced in THP-1 macrophages: (i) increase of MMP-9 gene expression and its pro-form secretion, (ii) intracellular accumulation of 7-ketocholesterol, (iii) ERS activation (increased eIF2α phosphorylation, XBP1 and CHOP mRNA levels, and Grp78 protein expression), and (iv) oxidative stress (increased levels of reactive oxygen species and NADPH oxidase activity). Incubation of macrophages with ERS inducer, TM determined the secretion of both pro- and active-form of MMP-9 and oxidative stress. Treatment of oxLDL or TM-incubated cells with ERS inhibitor, sodium phenylbutyrate decreased MMP-9 gene expression, secretion, and activity. The inhibitor of NADPH oxidase, apocynin, decreased XBP-1 and CHOP mRNA levels, and MMP-9 gene expression and secretion in oxLDL-exposed cells. In conclusion, oxLDL stimulate MMP-9 expression and secretion in human macrophages by mechanisms involving ERS. J. Cell. Biochem. 118: 661-669, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Acetofenonas/farmacología , Aterosclerosis/etiología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Cetocolesteroles/metabolismo , Lipoproteínas LDL/toxicidad , Macrófagos/efectos de los fármacos , NADPH Oxidasas/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Tunicamicina/toxicidad
7.
Mol Cell Biochem ; 417(1-2): 169-79, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27206739

RESUMEN

Type 2 Diabetes Mellitus is a worldwide epidemic, and its atherosclerotic complications produce morbidity and mortality in affected patients. It is known that the vascular cell adhesion molecule-1 (VCAM-1) levels are increased in the sera of diabetic patients. Our aim was to investigate the impact of the endoplasmic reticulum stress (ERS) in VCAM-1 expression and secretion in human endothelial cells (HEC) exposed to glycated low-density lipoproteins (gLDL). The results showed that 24 h incubation of HEC with gLDL induces (i) stimulation of VCAM-1 expression and secretion, determining increased monocyte adhesion to HEC; (ii) RAGE up-regulation and free cholesterol loading; (iii) ERS activation (increased eIF2α phosphorylation and CHOP mRNA levels, and decreased GRP78 protein expression); and (iv) oxidative stress [increased levels of reactive oxygen species (ROS) and glutamate cysteine ligase catalytic unit gene expression]. Treatment of gLDL-exposed HEC with ERS inhibitors, salubrinal (Sal) and sodium phenylbutyrate (PBA), decreased intracellular ROS. Incubation of gLDL-exposed cells with the anti-oxidant N-acetyl-cysteine (NAC) reduced ERS, revealed by decreased eIF2α phosphorylation and CHOP gene expression and increased GRP78 expression, thus validating the interconnection between ERS and oxidative stress. Sal, PBA, NAC and inhibitors of p38 MAP kinase and NF-kB induced the decrease of VCAM-1 expression and of the ensuing monocyte adhesion induced by gLDL. In conclusion, in HEC, gLDL stimulate the expression of cellular VCAM-1, the secretion of soluble VCAM-1, and the adhesion of monocytes through mechanisms involving p38 MAP kinase and NF-kB signalling pathways activated by RAGE, ERS and oxidative stress, thus contributing to diabetic atherosclerosis.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Lipoproteínas LDL/farmacología , Monocitos/metabolismo , Molécula 1 de Adhesión Celular Vascular/biosíntesis , Adhesión Celular/efectos de los fármacos , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Productos Finales de Glicación Avanzada , Humanos , Lipoproteínas LDL/metabolismo
8.
J Cell Mol Med ; 19(8): 1887-99, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25754218

RESUMEN

Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co-culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP-1 monocyte-derived foam cells, were analysed for the induction of senescence. Senescence associated ß-galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4-hydroxnonenal (4-HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4-HNE in the co-culture medium blunted this effect. Furthermore, both foam cells and 4-HNE increased the expression of the pro-oxidant thioredoxin-interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell-induced senescence. Previous studies showed that peroxisome proliferator-activated receptor (PPAR)δ was activated by 4-hydroalkenals, such as 4-HNE. Pharmacological interventions supported the involvement of the 4-HNE-PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell-released 4-HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence.


Asunto(s)
Aldehídos/farmacología , Proteínas Portadoras/metabolismo , Senescencia Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Células Espumosas/metabolismo , Animales , Biomarcadores/metabolismo , Bovinos , Línea Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Células Espumosas/citología , Células Espumosas/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Modelos Biológicos , PPAR delta/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
9.
Mol Biol Rep ; 41(9): 5765-73, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24928089

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA sequences that regulate gene expression post-transcriptionally by translation inhibition or mRNA degradation. The aim of the present study was to analyze serum miRNAs modulated by hyperlipidemia and/or hyperglycemia and to correlate them with biochemical parameters within lipid metabolism. Five selected circulating miRNAs (miR-125a-5p, miR-146a, miR-10a, miR-21 and miR-33a) were individually analyzed by TaqMan miRNA assays along with lipid and inflammation parameters in sera from 20 hyperlipidemic (HL) and/or hyperglycemic (HG) patients, and compared with data from five normolipidemic/normoglycemic subjects. Results showed: (1) the levels of all the analyzed circulating miRNA were increased in HL sera and correlated positively with sera's lipid and inflammatory parameters; (2) circulating miR-125a-5p and miR-146a levels were increased in HG and/or HL sera; (3) all selected miRNAs were detected in α-lipoprotein fraction from sera, and miR-33a was also present in ß-lipoprotein fraction; (4) miRNA concentrations were increased in the α-lipoprotein fraction from HL sera. These data show a statistically significant correlation of the analyzed miRNA with increased lipids, specifically with α- and ß-lipoproteins, and CRP and IL-1ß levels in HL and/or HG sera, suggesting a contribution of these miRNAs to the atherosclerotic process.


Asunto(s)
Hiperglucemia/sangre , Hiperlipidemias/sangre , MicroARNs/sangre , Adulto , Anciano , Apolipoproteína B-100/sangre , Apolipoproteínas E/sangre , Glucemia/metabolismo , Proteína C-Reactiva/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Femenino , Humanos , Interleucina-1beta/sangre , Modelos Lineales , Masculino , Persona de Mediana Edad , Triglicéridos/sangre
10.
Biochem Biophys Res Commun ; 434(1): 173-8, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23537656

RESUMEN

The role of HDL in the modulation of endoplasmic reticulum (ER) stress in macrophage-derived foam cells is not completely understood. Therefore, we aimed to investigate whether HDL may inhibit ER stress in correlation with the secretion of apoE and CETP from lipid-loaded macrophages. To this purpose, THP-1 macrophages were loaded with lipids by incubation with human oxidized LDL (oxLDL) and then exposed to human HDL3. ER stress signaling markers, protein kinase/Jun-amino-terminal kinase (SAPK/JNK p54/p46) and eukaryotic initiation factor-2α (eIF2α), as well as the secreted apoE and CETP, were evaluated by immunoblot analysis. Out of the many different bioactive lipids of oxLDL, we tested the effect of 9-hydroxy-octadecadienoic acid (9-HODE) and 4-hydroxynonenal (4-HNE) on ER stress. Tunicamycin was used as positive control for ER stress induction. Results showed that oxLDL, 9-HODE and 4-HNE induce ER stress in human macrophages by activation of eIF-2α and SAPK/JNK (p54/p46) signaling pathways. OxLDL stimulated apoE and CETP secretion, while tunicamycin determined a reduction of the secreted apoE and CETP, both in control and lipid-loaded macrophages. The addition of HDL3 to the culture medium of tunicamycin-treated cells induced: (i) the reduction of ER stress, expressed as decreased levels of eIF-2α and SAPK/JNK, and (ii) a partial recovery of the secreted apoE and CETP levels in lipid-loaded macrophages. These data suggest a new mechanism by which HDL3 diminish ER stress and stimulate cholesterol efflux from lipid-loaded macrophages.


Asunto(s)
Apolipoproteínas E/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Regulación hacia Abajo/fisiología , Estrés del Retículo Endoplásmico/fisiología , Metabolismo de los Lípidos/fisiología , Lipoproteínas HDL3/metabolismo , Lipoproteínas HDL3/fisiología , Macrófagos/metabolismo , Aldehídos/farmacología , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Humanos , Ácidos Linoleicos Conjugados/fisiología , Lípidos/administración & dosificación , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
11.
Biomolecules ; 13(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37189375

RESUMEN

Clinical data implicate fluctuations of high levels of plasma glucose in cardiovascular diseases. Endothelial cells (EC) are the first cells of the vessel wall exposed to them. Our aim was to evaluate the effects of oscillating glucose (OG) on EC function and to decipher new molecular mechanisms involved. Cultured human ECs (EA.hy926 line and primary cells) were exposed to OG (5/25 mM alternatively at 3 h), constant HG (25 mM) or physiological concentration (5 mM, NG) for 72 h. Markers of inflammation (Ninj-1, MCP-1, RAGE, TNFR1, NF-kB, and p38 MAPK), oxidative stress (ROS, VPO1, and HO-1), and transendothelial transport proteins (SR-BI, caveolin-1, and VAMP-3) were assessed. Inhibitors of ROS (NAC), NF-kB (Bay 11-7085), and Ninj-1 silencing were used to identify the mechanisms of OG-induced EC dysfunction. The results revealed that OG determined an increased expression of Ninj-1, MCP-1, RAGE, TNFR1, SR-B1, and VAMP-3 andstimulated monocyte adhesion. All of these effects were induced bymechanisms involving ROS production or NF-kB activation. NINJ-1 silencing inhibited the upregulation of caveolin-1 and VAMP-3 induced by OG in EC. In conclusion, OG induces increased inflammatory stress, ROS production, and NF-kB activation and stimulates transendothelial transport. To this end, we propose a novel mechanism linking Ninj-1 up-regulation to increased expression of transendothelial transport proteins.


Asunto(s)
Proteínas Portadoras , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Regulación hacia Arriba , Proteínas Portadoras/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/farmacología , Caveolina 1/genética , Caveolina 1/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo
12.
Cell Tissue Res ; 349(2): 433-46, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22592627

RESUMEN

The endothelium is a key constituent of the vascular wall, being actively involved in maintaining the structural integrity and proper functioning of blood vessels. Hyperlipidemia, diabetes, hypertension, smoking and aging are important risk factors for the dysfunction of endothelial cells (EC). Circulating lipoproteins (Lp) synthesized and secreted from the intestine or liver have an important role in supplying peripheral tissues with fatty acids from triglyceride rich lipoproteins (TGRLp) for energy production or storage, and cholesterol from low density lipoproteins (LDL) or high density lipoproteins (HDL) for the synthesis of cellular membranes and steroid hormones. Under pathological conditions, Lp may suffer alterations in concentration and composition and become aggressors for EC. Modified LDL, remnant Lp, TGRLp lipolysis products, dysfunctional HDL are involved in the changes induced in EC morphology (reduced glycocalyx, overdeveloped endoplasmic reticulum, Golgi apparatus and basement membrane), loose intercellular junctions, increased oxidative and inflammatory stress, nitric oxide/redox imbalance, excess Lp transport and storage, as well as loss of anti-thrombotic properties, all of these being characteristics of endothelial dysfunction. Normal HDL are able to counteract the harmful effects of atherogenic Lp in EC but under persistent pathological conditions they lose the protective properties and become pro-atherogenic. This review summarises recent advances in understanding the role of Lp in the induction of endothelial dysfunction and the initiation and progression of atherosclerotic lesions. Its main focus is the antagonistic role of atherogenic Lp (LDL, VLDL, dysfunctional HDL) versus anti-atherogenic Lp (HDL), also pointing out the potential targets for arresting or reversing this process.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Lipoproteínas/metabolismo , Animales , Aterosclerosis/sangre , Aterosclerosis/inmunología , Citocinas/inmunología , Células Endoteliales/inmunología , Humanos , Lipoproteínas/sangre , Lipoproteínas/inmunología , Estrés Oxidativo
13.
Biofactors ; 48(2): 454-468, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34741558

RESUMEN

Peripheral artery disease (PAD) is an atherosclerotic disorder affecting arteries of the lower limbs, the major risk factors including dyslipidemia and diabetes mellitus (DM). We aimed to identify alterations of the proteins in high-density lipoproteins (HDL) associated with HDL dysfunction in PAD patients. HDL2 and HDL3 were isolated from plasma of PAD patients with/without DM (PAD-DM/PAD) and healthy subjects (N). Apolipoprotein AI (ApoAI), ApoAII, ApoCIII, clusterin (CLU), paraoxonase 1 (PON1), myeloperoxidase (MPO), and ceruloplasmin (CP) were measured in HDL2 /HDL3 and plasma. Oxidation and glycation of the analyzed proteins were assessed as malondialdehyde-protein adducts (MDA) and advanced glycation end-products (AGE), respectively. The anti-inflammatory effect of HDL3 was estimated as its potential to reduce monocyte adhesion to tumor necrosis factor α-activated endothelial cells. We show that in PAD patients compared to N subjects: (i) HDL2 presented increased levels of MDA-PON1, AGE-PON1, AGE-ApoAI, ApoAII, ApoCIII, and CP levels, and decreased PON1 levels; (ii) HDL3 had increased levels of MDA- and AGE-CLU and -ApoAI, MDA-PON1, ApoCIII, CLU, MPO, CP, and reduced PON1 levels. All these alterations were exacerbated by DM. These changes were more pronounced in HDL3 , which had reduced anti-inflammatory potential in PAD and became pro-inflammatory in PAD-DM. In PAD patients' plasma, CLU levels and MPO specific activity increased, while PON1 specific activity decreased. In conclusion, HDL function is altered in PAD patients due to multiple modifications of associated proteins that are aggravated by DM. Plasma CLU, MPO, and PON1 could constitute indicators of HDL dysfunction and contribute to risk stratification in PAD patients.


Asunto(s)
Arildialquilfosfatasa , Clusterina , Diabetes Mellitus Tipo 2 , Enfermedad Arterial Periférica , Peroxidasa , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Clusterina/genética , Clusterina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Humanos , Lipoproteínas HDL , Peroxidasa/genética , Peroxidasa/metabolismo
14.
Biochem Biophys Res Commun ; 411(1): 202-7, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21729693

RESUMEN

Amlodipine, alone or in combination with other drugs, was successfully used to treat hypertension. Our aim was to evaluate the potential of amlodipine (Am) to restore endothelial dysfunction induced by irreversibly glycated low density lipoproteins (AGE-LDL), an in vitro model mimicking the diabetic condition. Human endothelial cells (HEC) from EA.hy926 line were incubated with AGE-LDL in the presence/absence of Am and the oxidative and inflammatory status of the cells was evaluated along with the p38 MAPK and NF-κB signalling pathways. The cellular NADPH activity, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine levels in the culture medium and the adhesion of human monocytes to HEC were measured by chemiluminescence, UHPLC, Western Blot and spectrofluorimetric techniques. The gene expression of NADPH subunits (p22(phox), NOX4), eNOS and inflammatory molecules (MCP-1, VCAM-1) were determined by Real Time PCR, while the protein expression of p22(phox), MCP-1, iNOS, phospho-p38 MAPK and phospho-p65 NF-κB subunit were measured by Western Blot. Results showed that in HEC incubated with AGE-LDL, Am led to: (i) decrease of the oxidative stress: by reducing p22(phox), NOX4, iNOS expression, NADPH oxidase activity, 4-HNE and 3-nitrotyrosine levels; (ii) decrease of the inflammatory stress: by the reduction of MCP-1 and VCAM-1 expression, as well as of the number of monocytes adhered to HEC; (iii) inhibition of ROS-sensitive signalling pathways: by decreasing phosphorylation of p38 MAPK and p65 NF-κB subunits. In conclusion, the reported data demonstrate that amlodipine may improve endothelial dysfunction in diabetes through anti-oxidant and anti-inflammatory mechanisms.


Asunto(s)
Amlodipino/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Células Endoteliales/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Quimiocina CCL2/biosíntesis , Células Endoteliales/metabolismo , Expresión Génica , Productos Finales de Glicación Avanzada , Humanos , Lipoproteínas LDL/farmacología , NADPH Oxidasas/biosíntesis , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Biosíntesis de Proteínas , Factor de Transcripción ReIA/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Biochem Biophys Res Commun ; 415(3): 497-502, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22056562

RESUMEN

Cholesteryl ester transfer protein (CETP) and apolipoprotein E (apoE) are secreted by macrophages. Apolipoprotein A-I (apoA-I) is a potent inducer of apoE secretion from lipid-loaded macrophages, but its effect on CETP is not known. We aimed to identify the signaling pathways involved in apoA-I and HDL-mediated regulation of CETP and apoE secretion from lipid-loaded macrophages. THP-1 macrophages were loaded with lipids by incubation with human copper-oxidized LDL. The cells were subsequently exposed to human purified apoA-I or HDL(3) with/without inhibitors of NF-κB (TPCK) or PKA (H89). CETP and apoE in the cultured cells and media were quantified by real-time PCR and Western blot. Results showed that in lipid-loaded macrophages: (i) CETP and apoE gene expression and secretion were increased in the presence of apoA-I, and further increased by inhibition of NF-kB with TPCK; (ii) CETP and apoE gene expression and secretion were reduced by the inhibition of PKA with H89; (iii) PKA-gamma subunit was activated by oxidized LDL and moreover by apoA-I. We also showed that: (i) siRNA-mediated CETP gene silencing diminished apoE secretion from both non-loaded and lipid-loaded macrophages; (ii) addition of apoA-I partially restored apoE secretion from lipid-loaded macrophages with the silenced CETP gene. In conclusion, our data suggest a new mechanism by which apoA-I stimulates CETP secretion, in addition to apoE, from lipid loaded macrophages, a process involving NF-κB inhibition and/or PKA pathway activation.


Asunto(s)
Apolipoproteína A-I/metabolismo , Apolipoproteínas E/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , HDL-Colesterol/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Apolipoproteína A-I/farmacología , Proteínas de Transferencia de Ésteres de Colesterol/genética , HDL-Colesterol/farmacología , Expresión Génica , Silenciador del Gen , Humanos , Metabolismo de los Lípidos , Macrófagos/efectos de los fármacos , ARN Interferente Pequeño/genética , Transducción de Señal
16.
PLoS One ; 16(1): e0245797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33493198

RESUMEN

Uptake of modified lipoproteins by macrophages turns them into foam cells, the hallmark of the atherosclerotic plaque. The initiation and progression of atherosclerosis have been associated with mitochondrial dysfunction. It is known that aggregated low-density lipoproteins (agLDL) induce massive cholesterol accumulation in macrophages in contrast with native LDL (nLDL) and oxidized LDL (oxLDL). In the present study we aimed to assess the effect of agLDL on the mitochondria and ER function in macrophage-derived foam cells, in an attempt to estimate the potential of these cells, known constituents of early fatty streaks, to generate atheroma in the absence of oxidative stress. Results show that agLDL induce excessive accumulation of free (FC) and esterified cholesterol in THP-1 macrophages and determine mitochondrial dysfunction expressed as decreased mitochondrial membrane potential and diminished intracellular ATP levels, without generating mitochondrial reactive oxygen species (ROS) production. AgLDL did not stimulate intracellular ROS (superoxide anion or hydrogen peroxide) production, and did not trigger endoplasmic reticulum stress (ERS) or apoptosis. In contrast to agLDL, oxLDL did not modify FC levels, but stimulated the accumulation of 7-ketocholesterol in the cells, generating oxidative stress which is associated with an increased mitochondrial dysfunction, ERS and apoptosis. Taken together, our results reveal that agLDL induce foam cells formation and mild mitochondrial dysfunction in human macrophages without triggering oxidative or ERS. These data could partially explain the early formation of fatty streaks in the intima of human arteries by interaction of monocyte-derived macrophages with non-oxidatively aggregated LDL generating foam cells, which cannot evolve into atherosclerotic plaques in the absence of the oxidative stress.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Espumosas/efectos de los fármacos , Lipoproteínas LDL/química , Lipoproteínas LDL/farmacología , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Agregado de Proteínas , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Colesterol/metabolismo , Células Espumosas/citología , Células Espumosas/metabolismo , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Mitocondrias/metabolismo
17.
Biomolecules ; 11(12)2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34944413

RESUMEN

Atherosclerosis is the main cause of cardiovascular diseases with high prevalence worldwide. A promising therapeutic strategy to reverse atherosclerotic process is to improve the athero-protective potential of high-density lipoproteins (HDL). Since the small intestine is a source of HDL, we aimed to activate transcription of the endogenous HDL major proteins, apolipoprotein AI (ApoAI) and paraoxonase 1 (PON1), in enterocytes, and to evaluate their potential to correct the pro-inflammatory status of endothelial cells (EC). Caco-2 enterocytes were transfected with CRISPR activation plasmids targeting ApoAI or PON1, and their gene and protein expression were measured in cells and conditioned medium (CM). ATP binding cassette A1 and G8 transporters (ABCA1, ABCG8), scavenger receptor BI (SR-BI), and transcription regulators peroxisome proliferator-activated receptor γ (PPARγ), liver X receptors (LXRs), and sirtuin-1 (SIRT1) were assessed. Anti-inflammatory effects of CM from transfected enterocytes were estimated through its ability to inhibit tumor necrosis factor α (TNFα) activation of EC. Transcriptional activation of ApoAI or PON1 in enterocytes induces: (i) increase of their gene and protein expression, and secretion in CM; (ii) stimulation of ABCA1/G8 and SR-BI; (iii) upregulation of PPARγ, LXRs, and SIRT1. CM from transfected enterocytes attenuated the TNFα-induced inflammatory and oxidative stress in EC, by decreasing TNF receptor 1, monocyte chemoattractant protein-1, and p22phox. In conclusion, transcriptional activation of endogenous ApoAI or PON1 in enterocytes by CRISPR/dCas9 system is a realistic approach to stimulate biogenesis and function of major HDL proteins which can regulate cholesterol efflux transporters and reduce the inflammatory stress in activated EC.


Asunto(s)
Apolipoproteína A-I/genética , Arildialquilfosfatasa/genética , Células Endoteliales/citología , Enterocitos/citología , Apolipoproteína A-I/metabolismo , Arildialquilfosfatasa/metabolismo , Sistemas CRISPR-Cas , Células CACO-2 , Medios de Cultivo Condicionados/química , Células Endoteliales/metabolismo , Enterocitos/metabolismo , Regulación de la Expresión Génica , Humanos , Lipoproteínas HDL/metabolismo , Estrés Oxidativo , Activación Transcripcional , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Cell Mol Med ; 14(12): 2790-802, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19818091

RESUMEN

The major complication of diabetes is accelerated atherosclerosis, the progression of which entails complex interactions between the modified low-density lipoproteins (LDL) and the cells of the arterial wall. Advanced glycation end product-modified-LDL (AGE-LDL) that occurs at high rate in diabetes contributes to diabetic atherosclerosis, but the underlying mechanisms are not fully understood. The aim of this study was to assess the direct effect of AGE-LDL on human vascular smooth muscle cells (hSMC) dysfunction. Cultured hSMC incubated (24 hrs) with human AGE-LDL, native LDL (nLDL) or oxidized LDL (oxLDL) were subjected to: (i) quantification of the expression of the receptors for modified LDL and AGE proteins (LRP1, CD36, RAGE) and estimation of lipid loading, (ii) determination of NADPH oxidase activity and reactive oxygen species (ROS) production and (iii) evaluation of the expression of monocyte chemoattractant protein-1 (MCP-1). The results show that exposure of hSMC to AGE-LDL (compared to nLDL) induced: (a) increased NADPH oxidase activity (30%) and ROS production (28%) by up-regulation of NOX1, NOX4, p22phox and p67phox expression, (b) accumulation of intracellular cholesteryl esters, (c) enhanced gene expression of LRP1 (160%) and CD36 (35%), and protein expression of LRP1, CD36 and RAGE, (d) increased MCP-1 gene expression (160%) and protein secretion (300%) and (e) augmented cell proliferation (30%). In conclusion, AGE-LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro-oxidant state (activation of NADPHox), lipid accumulation and a pro-inflammatory state (expression of MCP-1). These results may partly explain the contribution of AGE-LDL and hSMC to the accelerated atherosclerosis in diabetes.


Asunto(s)
Células Endoteliales/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/metabolismo , Estrés Oxidativo , Antígenos CD/genética , Arterias/citología , Aterosclerosis/etiología , Antígenos CD36/genética , Células Cultivadas , Quimiocina CCL2/genética , Complicaciones de la Diabetes , Células Endoteliales/química , Células Endoteliales/citología , Expresión Génica , Humanos , Inflamación , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Músculo Liso Vascular/citología , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fosfoproteínas/genética , Especies Reactivas de Oxígeno/sangre , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
19.
Biochem Biophys Res Commun ; 391(1): 587-91, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19932084

RESUMEN

Apolipoprotein A5 gene (APOA5) variants are associated with increased plasma triglycerides, a risk factor for the metabolic syndrome (MS), but a correlation with apolipoprotein C3 (APOC3) genotypes is controversial. We investigated the correlation of APOA5 genotypes with plasma apoA5 levels and APOC3 genotypes in MS patients from a Romanian population. APOA5 (-1131T>C, c.56C>G) and APOC3 (-482C>T, -455T>C) genotypes and plasma apoA5 concentration were determined in MS patients and healthy subjects. Results showed higher apoA5 levels in plasma and high density lipoproteins (HDL) from MS patients, carriers of the APOA5 c.56G allele, as compared to MS carriers of APOA5 -1131C allele or the common genotype. ApoA5 levels in plasma and HDL fraction from MS carriers of -1131C and c.56G alleles correlated positively with plasma triglycerides levels and negatively with HDL-cholesterol in MS carriers of c.56G allele. Higher frequencies of APOC3 -482T and -455C alleles were detected in MS patients compared with healthy subjects. We demonstrated the association of APOC3 -482T and -455C with APOA5 -1131C allele, but not with c.56G allele in MS patients. We propose APOA5c.56C>G as a functional polymorphism, whereas APOA5 -1131T>C is not an independent risk factor, being effective only when associated with APOC3 -482T or -455C alleles.


Asunto(s)
Apolipoproteína C-III/genética , Apolipoproteínas A/sangre , Apolipoproteínas A/genética , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Adulto , Alelos , Apolipoproteína A-V , Femenino , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Triglicéridos/sangre , Adulto Joven
20.
Biochem Biophys Res Commun ; 391(1): 282-6, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19913498

RESUMEN

We aimed to investigate whether polymorphisms LEP G-2548A and LEPR Q223R in the human leptin (LEP), and leptin receptor (LEPR) genes are associated with obesity and metabolic traits in a sample of Romanian population. Two hundred and two subjects divided in obese (body mass index, BMI30 kg/m(2)), and non-obese were included in this study. The polymorphisms were genotyped using polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) analysis. The results showed no significant differences in LEP and LEPR genotype and allele frequencies between obese and non-obese subjects. Logistic regression analysis showed that LEP -2548GG genotype presented an increased risk of obesity (p=0.013, OR=1.003, 95% CI=1.000-1.007), after adjusting for age and gender. The association analysis with metabolic syndrome quantitative traits showed that homozygous for LEP -2548G allele had significantly higher leptin levels (17.2+/-6.6 ng/ml vs. 13.2+/-4.9 ng/ml, p=0.011), and carriers of R allele had higher levels of triglycerides (p=0.017) and glucose (p=0.040), and enhanced systolic (p=0.015) and diastolic blood pressure (p=0.026), after adjustment for age, gender, and BMI. These results indicate that LEP G-2548A and LEPR Q223R SNPs may not be considered as genetic risk factors for obesity in a sample of Romanian population. However, LEP -2548GG genotype appear to be important in regulating leptin levels, whereas the LEPR 223R allele might predispose healthy subjects to develop metabolic disturbances.


Asunto(s)
Predisposición Genética a la Enfermedad , Leptina/genética , Obesidad/genética , Receptores de Leptina/genética , Adulto , Arginina/genética , Índice de Masa Corporal , Femenino , Frecuencia de los Genes , Glutamina/genética , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Rumanía , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA