Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 342: 99-107, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407367

RESUMEN

Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ increases mitochondrial H2O2 production through an unidentified mechanism. We sought to characterize the effects of 1,2-NQ exposure on mitochondrial respiration as a source of H2O2 in human airway epithelial cells. We measured the effects of acute exposure to 1,2-NQ on oxygen consumption rate (OCR) in the human bronchial epithelial cell line BEAS-2B and mitochondrial preparations using extracellular flux analysis. Complex-specific assays and NADPH depletion by glucose deprivation distinguished between mitochondrial and non-mitochondrial oxygen utilization. 1,2-NQ exposure of BEAS cells caused a rapid, marked dose-dependent increase in OCR that was independent of mitochondrial respiration, exceeded the OCR observed after mitochondrial uncoupling, and remained sensitive to NADPH depletion, implicating extra-mitochondrial redox cycling processes. Similar effects were observed with the environmentally relevant redox-cycling quinones 1,4-naphthoquinone and 9,10-phenanthrenequinone, but not with quinones that do not redox cycle, such as 1,4-benzoquinone. In mitochondrial preparations, 1,2-NQ caused a decrease in Complex I-linked substrate oxidation, suggesting impairment of pyruvate utilization or transport, a novel mechanism of mitochondrial inhibition by an environmental exposure. This study also highlights the methodological utility and challenges in the use of extracellular flux analysis to elucidate the mechanisms of action of redox-active electrophiles present in ambient air.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/metabolismo , Mitocondrias/metabolismo , Material Particulado/toxicidad , Mucosa Respiratoria/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Peróxido de Hidrógeno/toxicidad , Pulmón/citología , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Mucosa Respiratoria/efectos de los fármacos
2.
Environ Sci Technol ; 52(9): 5417-5426, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29611697

RESUMEN

Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 µM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 µM-100 µM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).


Asunto(s)
Disruptores Endocrinos , Simportadores , Humanos , Yoduros , Glándula Tiroides
3.
Chem Res Toxicol ; 28(12): 2411-8, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26605980

RESUMEN

Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 µM 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 µM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress.


Asunto(s)
Estrés Oxidativo , Proteínas/química , Ácidos Sulfénicos/química , Células Cultivadas , Humanos , Modelos Biológicos , Naftoquinonas/toxicidad , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas/efectos de los fármacos , Ácidos Sulfénicos/toxicidad
4.
Proc Natl Acad Sci U S A ; 109(14): 5423-8, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431602

RESUMEN

Human ATAD5 is a biomarker for identifying genotoxic compounds because ATAD5 protein levels increase posttranscriptionally in response to DNA damage. We screened over 4,000 compounds with a cell-based quantitative high-throughput ATAD5-luciferase assay detecting genotoxic compounds. We identified 22 antioxidants, including resveratrol, genistein, and baicalein, that are currently used or investigated for the treatment of cardiovascular disease, type 2 diabetes, osteopenia, osteoporosis, and chronic hepatitis, as well as for antiaging. Treatment of dividing cells with these compounds induced DNA damage and resulted in cell death. Despite their genotoxic effects, resveratrol, genistein, and baicalein did not cause mutagenesis, which is a major side effect of conventional anticancer drugs. Furthermore, resveratrol and genistein killed multidrug-resistant cancer cells. We therefore propose that resveratrol, genistein, and baicalein are attractive candidates for improved chemotherapeutic agents.


Asunto(s)
Antioxidantes/farmacología , Muerte Celular/efectos de los fármacos , Daño del ADN , Pruebas de Mutagenicidad , Línea Celular , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Flavanonas/farmacología , Genisteína/farmacología , Humanos , Resveratrol , Estilbenos/farmacología
5.
Chem Res Toxicol ; 27(3): 387-99, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24383450

RESUMEN

High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein, we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluorescent peroxidase substrate, Amplex UltraRed (AUR), were employed in an end-point assay for comparison to the existing kinetic guaiacol (GUA) oxidation assay. Following optimization of assay metrics, including Z', dynamic range, and activity, using methimazole (MMI), the assay was tested with a 21-chemical training set. The potency of MMI-induced TPO inhibition was greater with AUR compared to GUA. The dynamic range and Z' score with MMI were as follows: 127-fold and 0.62 for the GUA assay, 18-fold and 0.86 for the 96-well AUR assay, and 11.5-fold and 0.93 for the 384-well AUR assay. The 384-well AUR assay drastically reduced animal use, requiring one-tenth of the rat thyroid microsomal protein needed for the GUA 96-well format assay. Fourteen chemicals inhibited TPO, with a relative potency ranking of MMI > ethylene thiourea > 6-propylthiouracil > 2,2',4,4'-tetrahydroxy-benzophenone > 2-mercaptobenzothiazole > 3-amino-1,2,4-triazole > genistein > 4-propoxyphenol > sulfamethazine > daidzein > 4-nonylphenol > triclosan > iopanoic acid > resorcinol. These data demonstrate the capacity of this assay to detect diverse TPO inhibitors. Seven chemicals acted as negatives: 2-hydroxy-4-methoxybenzophenone, dibutylphthalate, diethylhexylphthalate, diethylphthalate, 3,5-dimethylpyrazole-1-methanol, methyl 2-methyl-benzoate, and sodium perchlorate. This assay could be used to screen large numbers of chemicals as an integral component of a tiered TH-disruptor screening approach.


Asunto(s)
Pruebas de Enzimas , Inhibidores Enzimáticos/metabolismo , Microsomas/enzimología , Peroxidasa/metabolismo , Glándula Tiroides/metabolismo , Animales , Inhibidores Enzimáticos/química , Guayacol/química , Guayacol/metabolismo , Ensayos Analíticos de Alto Rendimiento , Masculino , Metimazol/química , Metimazol/metabolismo , Oxazinas/química , Oxazinas/metabolismo , Oxidación-Reducción , Peroxidasa/antagonistas & inhibidores , Unión Proteica , Ratas , Ratas Long-Evans , Especificidad por Sustrato
6.
Int J Hyg Environ Health ; 260: 114390, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772087

RESUMEN

OBJECTIVES: In the US, violations of drinking water regulations are highest in lower-income rural areas overall, and particularly in Central Appalachia. However, data on drinking water use, quality, and associated health outcomes in rural Appalachia are limited. We sought to assess public and private drinking water sources and associated risk factors for waterborne pathogen exposures for individuals living in rural regions of Appalachian Virginia. METHODS: We administered surveys and collected tap water, bottled water, and saliva samples in lower-income households in two adjacent rural counties in southwest Virginia (bordering Kentucky and Tennessee). Water samples were tested for pH, temperature, conductivity, total coliforms, E. coli, free chlorine, nitrate, fluoride, heavy metals, and specific pathogen targets. Saliva samples were analyzed for antibody responses to potentially waterborne infections. We also shared water analysis results with households. RESULTS: We enrolled 33 households (83 individuals), 82% (n = 27) with utility-supplied water and 18% with private wells (n = 3) or springs (n = 3). 58% (n = 19) reported household incomes of <$20,000/year. Total coliforms were detected in water samples from 33% (n = 11) of homes, E. coli in 12%, all with wells or springs (n = 4), and Aeromonas, Campylobacter, and Enterobacter in 9%, all spring water (n = 3). Diarrhea was reported for 10% of individuals (n = 8), but was not associated with E. coli detection. 34% (n = 15) of saliva samples had detectable antibody responses for Cryptosporidium spp., C. jejuni, and Hepatitis E. After controlling for covariates and clustering, individuals in households with septic systems and straight pipes had significantly higher likelihoods of antibody detection (risk ratios = 3.28, 95%CI = 1.01-10.65). CONCLUSIONS: To our knowledge, this is the first study to collect and analyze drinking water samples, saliva samples, and reported health outcome data from low-income households in Central Appalachia. Our findings indicate that utility-supplied water in this region was generally safe, and individuals in low-income households without utility-supplied water or sewerage have higher exposures to waterborne pathogens.


Asunto(s)
Agua Potable , Humanos , Agua Potable/microbiología , Virginia/epidemiología , Masculino , Adulto , Femenino , Persona de Mediana Edad , Saliva/microbiología , Microbiología del Agua , Calidad del Agua , Abastecimiento de Agua , Adulto Joven , Adolescente , Población Rural/estadística & datos numéricos , Anciano , Región de los Apalaches/epidemiología , Niño , Pobreza
7.
Front Toxicol ; 5: 1134783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082740

RESUMEN

Introduction: Analysis of streamlined computational models used to predict androgen disrupting chemicals revealed that assays measuring androgen receptor (AR) cofactor recruitment/dimerization were particularly indispensable to high predictivity, especially for AR antagonists. As the original dimerization assays used to develop the minimal assay models are no longer available, new assays must be established and evaluated as suitable alternatives to assess chemicals beyond the original 1,800+ supported by the current data. Here we present the AR2 assay, which is a stable, cell-based method that uses an enzyme complementation approach. Methods: Bipartite domains of the NanoLuc luciferase enzyme were fused to the human AR to quantitatively measure ligand-dependent AR homodimerization. 128 chemicals with known endocrine activity profiles including 43 AR reference chemicals were screened in agonist and antagonist modes and compared to the legacy assays. Test chemicals were rescreened in both modes using a retrofit method to incorporate robust cytochrome P450 (CYP) metabolism to assess CYP-mediated shifts in bioactivity. Results: The AR2 assay is amenable to high-throughput screening with excellent robust Z'-factors (rZ') for both agonist (0.94) and antagonist (0.85) modes. The AR2 assay successfully classified known agonists (balanced accuracy = 0.92) and antagonists (balanced accuracy = 0.79-0.88) as well as or better than the legacy assays with equal or higher estimated potencies. The subsequent reevaluation of the 128 chemicals tested in the presence of individual human CYP enzymes changed the activity calls for five compounds and shifted the estimated potencies for several others. Discussion: This study shows the AR2 assay is well suited to replace the previous AR dimerization assays in a revised computational model to predict AR bioactivity for parent chemicals and their metabolites.

8.
Comput Toxicol ; 262023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37388277

RESUMEN

High-throughput screening (HTS) assays for bioactivity in the Tox21 program aim to evaluate an array of different biological targets and pathways, but a significant barrier to interpretation of these data is the lack of high-throughput screening (HTS) assays intended to identify non-specific reactive chemicals. This is an important aspect for prioritising chemicals to test in specific assays, identifying promiscuous chemicals based on their reactivity, as well as addressing hazards such as skin sensitisation which are not necessarily initiated by a receptor-mediated effect but act through a non-specific mechanism. Herein, a fluorescence-based HTS assay that allows the identification of thiol-reactive compounds was used to screen 7,872 unique chemicals in the Tox21 10K chemical library. Active chemicals were compared with profiling outcomes using structural alerts encoding electrophilic information. Random Forest classification models based on chemical fingerprints were developed to predict assay outcomes and evaluated through 10-fold stratified cross validation (CV). The mean CV Balanced Accuracy of the validation set was 0.648. The model developed shows promise as a tool to screen untested chemicals for their potential electrophilic reactivity based solely on chemical structural features.

9.
ACS Omega ; 8(12): 11261-11266, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008141

RESUMEN

Certain e-liquids and aromatic aldehyde flavoring agents were previously identified as inhibitors of microsomal recombinant CYP2A6, the primary nicotine-metabolizing enzyme. However, due to their reactive nature, aldehydes may react with cellular components before reaching CYP2A6 in the endoplasmic reticulum. To determine whether e-liquid flavoring agents inhibited CYP2A6 in a cellular system, we investigated their effects on CYP2A6 using BEAS-2B cells transduced to overexpress CYP2A6. We demonstrated that two e-liquids and three aldehyde flavoring agents (cinnamaldehyde, benzaldehyde, and ethyl vanillin) exhibited dose-dependent inhibition of cellular CYP2A6.

10.
Redox Biol ; 61: 102646, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36867944

RESUMEN

While redox processes play a vital role in maintaining intracellular homeostasis by regulating critical signaling and metabolic pathways, supra-physiological or sustained oxidative stress can lead to adverse responses or cytotoxicity. Inhalation of ambient air pollutants such as particulate matter and secondary organic aerosols (SOA) induces oxidative stress in the respiratory tract through mechanisms that remain poorly understood. We investigated the effect of isoprene hydroxy hydroperoxide (ISOPOOH), an atmospheric oxidation product of vegetation-derived isoprene and a constituent of SOA, on intracellular redox homeostasis in cultured human airway epithelial cells (HAEC). We used high-resolution live cell imaging of HAEC expressing the genetically encoded ratiometric biosensors Grx1-roGFP2, iNAP1, or HyPer, to assess changes in the cytoplasmic ratio of oxidized glutathione to reduced glutathione (GSSG:GSH), and the flux of NADPH and H2O2, respectively. Non-cytotoxic exposure to ISOPOOH resulted in a dose-dependent increase of GSSG:GSH in HAEC that was markedly potentiated by prior glucose deprivation. ISOPOOH-induced increase in glutathione oxidation were accompanied by concomitant decreases in intracellular NADPH. Following ISOPOOH exposure, the introduction of glucose resulted in a rapid restoration of GSH and NADPH, while the glucose analog 2-deoxyglucose resulted in inefficient restoration of baseline GSH and NADPH. To elucidate bioenergetic adaptations involved in combatting ISOPOOH-induced oxidative stress we investigated the regulatory role of glucose-6-phosphate dehydrogenase (G6PD). A knockout of G6PD markedly impaired glucose-mediated recovery of GSSG:GSH but not NADPH. These findings reveal rapid redox adaptations involved in the cellular response to ISOPOOH and provide a live view of the dynamic regulation of redox homeostasis in human airway cells as they are exposed to environmental oxidants.


Asunto(s)
Glutatión , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/farmacología , Disulfuro de Glutatión/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Células Epiteliales/metabolismo , Estrés Oxidativo , Sistema Respiratorio/metabolismo , Glucosa/farmacología , NADP/metabolismo
11.
Redox Biol ; 51: 102281, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306372

RESUMEN

Exposure to respirable air particulate matter (PM2.5) in ambient air is associated with morbidity and premature deaths. A major source of PM2.5 is the photooxidation of volatile plant-produced organic compounds such as isoprene. Photochemical oxidation of isoprene leads to the formation of hydroperoxides, environmental oxidants that lead to inflammatory (IL-8) and adaptive (HMOX1) gene expression in human airway epithelial cells (HAEC). To examine the mechanism through which these oxidants alter intracellular redox balance, we used live-cell imaging to monitor the effects of isoprene hydroxyhydroperoxides (ISOPOOH) in HAEC expressing roGFP2, a sensor of the glutathione redox potential (EGSH). Non-cytotoxic exposure of HAEC to ISOPOOH resulted in a rapid and robust increase in EGSH that was independent of the generation of intracellular or extracellular hydrogen peroxide. Our results point to oxidation of GSH through the redox relay initiated by glutathione peroxidase 4, directly by ISOPOOH or indirectly by ISOPOOH-generated lipid hydroperoxides. We did not find evidence for involvement of peroxiredoxin 6. Supplementation of HAEC with polyunsaturated fatty acids enhanced ISOPOOH-induced glutathione oxidation, providing additional evidence that ISOPOOH initiates lipid peroxidation of cellular membranes. These findings demonstrate that ISOPOOH is a potent environmental airborne hydroperoxide with the potential to contribute to oxidative burden of human airway posed by inhalation of secondary organic aerosols.


Asunto(s)
Estrés Oxidativo , Material Particulado , Butadienos , Células Epiteliales/metabolismo , Glutatión/metabolismo , Hemiterpenos , Humanos , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Oxidación-Reducción
12.
Toxicol Appl Pharmacol ; 243(1): 46-54, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19914270

RESUMEN

Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-8/metabolismo , Mucosa Respiratoria/citología , Emisiones de Vehículos/toxicidad , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Células Cultivadas , Humanos , Interleucina-8/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
13.
Toxicol Sci ; 176(1): 175-192, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32374859

RESUMEN

Mitochondrial toxicity drives several adverse health outcomes. Current high-throughput screening assays for chemically induced mitochondrial toxicity typically measure changes to mitochondrial structure and may not detect known mitochondrial toxicants. We adapted a respirometric screening assay (RSA) measuring mitochondrial function to screen ToxCast chemicals in HepG2 cells using a tiered testing strategy. Of 1042 chemicals initially screened at a singlemaximal concentration, 243 actives were identified and rescreened at 7 concentrations. Concentration-response data for 3 respiration phases confirmed activity and indicated a mechanism for 193 mitochondrial toxicants: 149 electron transport chain inhibitors (ETCi), 15 uncouplers and 29 adenosine triphosphate synthase inhibitors. Subsequently, an electron flow assay was used to identify the target complex for 84 of the 149 ETCi. Sixty reference chemicals were used to compare the RSA to existing ToxCast and Tox21 mitochondrial toxicity assays. The RSA was most predictive (accuracy = 90%) of mitochondrial toxicity. The Tox21 mitochondrial membrane potential assay was also highly predictive (accuracy = 87%) of bioactivity but underestimated the potency of well-known ETCi and provided no mechanistic information. The tiered RSA approach accurately identifies and characterizes mitochondrial toxicants acting through diverse mechanisms and at a throughput sufficient to screen large chemical inventories. The electron flow assay provides additional confirmation and detailed mechanistic understanding for ETCi, the most common type of mitochondrial toxicants among ToxCast chemicals. The mitochondrial toxicity screening approach described herein may inform hazard assessment and the in vitro bioactive concentrations used to derive relevant doses for screening level chemical assessment using new approach methodologies.


Asunto(s)
Mitocondrias/efectos de los fármacos , Pruebas de Toxicidad/métodos , Bioensayo , Sustancias Peligrosas , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento , Humanos , Potencial de la Membrana Mitocondrial , Bibliotecas de Moléculas Pequeñas
14.
Mol Biol Cell ; 17(4): 1711-22, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16467376

RESUMEN

We have reported that extracts prepared from many human and mouse cell lines show little or no Sp2 DNA-binding activity and that Sp2 has little or no capacity to stimulate transcription of promoters that are activated by Sp1, Sp3, and Sp4. Using an array of chimeric Sp1/Sp2 proteins we showed further that Sp2 DNA-binding activity and trans-activation are each negatively regulated in mammalian cells. As part of an ongoing effort to study Sp2 function and regulation we characterized its subcellular localization in comparison with other Sp-family members in fixed and live cells. We report that 1) Sp2 localizes largely within subnuclear foci associated with the nuclear matrix, and 2) these foci are distinct from promyelocytic oncogenic domains and appear to be stable during an 18-h time course of observation. Deletion analyses identified a 37 amino acid sequence spanning the first zinc-"finger" that is sufficient to direct nuclear matrix association, and this region also encodes a bipartite nuclear localization sequence. A second nuclear matrix targeting sequence is encoded within the Sp2 trans-activation domain. We conclude that Sp2 preferentially associates with the nuclear matrix and speculate that this subcellular localization plays an important role in the regulation of Sp2 function.


Asunto(s)
Matriz Nuclear/metabolismo , Factor de Transcripción Sp2/genética , Factor de Transcripción Sp2/metabolismo , Dedos de Zinc/genética , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Humanos , Interfase , Datos de Secuencia Molecular , Matriz Nuclear/química , Análisis por Matrices de Proteínas , Estructura Terciaria de Proteína , Eliminación de Secuencia , Factores de Transcripción Sp/análisis , Factores de Transcripción Sp/metabolismo , Factor de Transcripción Sp2/análisis , Transfección
15.
Biochim Biophys Acta Gen Subj ; 1863(5): 950-959, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30844486

RESUMEN

BACKGROUND: Peroxidation of PUFAs by a variety of endogenous and xenobiotic electrophiles is a recognized pathophysiological process that can lead to adverse health effects. Although secondary products generated from peroxidized PUFAs have been relatively well studied, the role of primary lipid hydroperoxides in mediating early intracellular oxidative events is not well understood. METHODS: Live cell imaging was used to monitor changes in glutathione (GSH) oxidation in HAEC expressing the fluorogenic sensor roGFP during exposure to 9-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE), a biologically important long chain lipid hydroperoxide, and its secondary product 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE). The role of hydrogen peroxide (H2O2) was examined by direct measurement and through catalase interventions. shRNA-mediated knockdown of glutathione peroxidase 4 (GPx4) was utilized to determine its involvement in the relay through which 9-HpODE initiates the oxidation of GSH. RESULTS: Exposure to 9-HpODE caused a dose-dependent increase in GSH oxidation in HAEC that was independent of intracellular or extracellular H2O2 production and was exacerbated by NADPH depletion. GPx4 was involved in the initiation of GSH oxidation in HAEC by 9-HpODE, but not that induced by exposure to H2O2 or the low molecular weight alkyl tert-butyl hydroperoxide (TBH). CONCLUSIONS: Long chain lipid hydroperoxides can directly alter cytosolic EGSH independent of secondary lipid oxidation products or H2O2 production. NADPH has a protective role against 9-HpODE induced EGSH changes. GPx4 is involved specifically in the reduction of long-chain lipid hydroperoxides, leading to GSH oxidation. SIGNIFICANCE: These results reveal a previously unrecognized consequence of lipid peroxidation, which may provide insight into disease states involving lipid peroxidation in their pathogenesis.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Fosfolípido Hidroperóxido Glutatión Peroxidasa
16.
Environ Health Perspect ; 127(9): 95001, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31487205

RESUMEN

BACKGROUND: Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES: We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION: There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.


Asunto(s)
Rutas de Resultados Adversos , Contaminantes Ambientales/toxicidad , Glándula Tiroides/efectos de los fármacos , Animales , Bioensayo , Humanos , Hormonas Tiroideas
17.
Toxicol Sci ; 169(2): 317-332, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835285

RESUMEN

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.


Asunto(s)
Biología Computacional/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Toxicología/métodos , Toma de Decisiones , Humanos , Tecnología de la Información , Medición de Riesgo , Toxicocinética , Estados Unidos , United States Environmental Protection Agency
18.
Artículo en Inglés | MEDLINE | ID: mdl-29555536

RESUMEN

The US EPA's ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to false positive (chemical is detoxified in vivo) as well as false negative results (chemical is bioactivated in vivo) and thus potential mischaracterization of chemical hazard. To address this challenge, the ten most prevalent human liver cytochrome P450 (CYP) enzymes were introduced into a human cell line (HEK293T) with low endogenous metabolic capacity. The CYP enzymes were introduced via transfection of modified mRNAs as either singlets or as a mixture in relative proportions as expressed in human liver. Initial experiments using luminogenic substrates demonstrate that CYP enzyme activities are significantly increased when co-transfected with an mRNA encoding a CYP accessory protein, P450 oxidoreductase (POR). Transfected HEK293T cells demonstrate the ability to produce predicted metabolites following treatment with well-studied CYP substrates for at least 18 h post-treatment. As a demonstration of how this method can be used to retrofit existing HTS assays, a proof-of-concept screen for cytotoxicity in HEK293T cells was conducted using 56 test compounds. The results demonstrate that the xenobiotic metabolism conferred by transfection of CYP-encoding mRNAs shifts the dose-response relationship for some of the tested chemicals such as aflatoxin B1 (bioactivation) and fenazaquin (detoxification). Overall, transfection of CYP-encoding mRNAs is an effective and portable solution for retrofitting existing cell-based HTS assays with metabolic competence.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , ARN Mensajero/metabolismo , Xenobióticos/metabolismo , Aflatoxina B1/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Hígado/enzimología , Quinazolinas/metabolismo , Transfección , Xenobióticos/administración & dosificación
19.
Chemosphere ; 191: 868-875, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29107228

RESUMEN

Environmental chemicals can induce thyroid disruption through a number of mechanisms including altered thyroid hormone biosynthesis and transport, as well as activation and inhibition of the thyroid receptor. In the current study six in vitro bioassays indicative of different mechanisms of thyroid disruption and one whole animal in vivo assay were applied to 9 model compounds and 4 different water samples (treated wastewater, surface water, drinking water and ultra-pure lab water; both unspiked and spiked with model compounds) to determine their ability to detect thyroid active compounds. Most assays correctly identified and quantified the model compounds as agonists or antagonists, with the reporter gene assays being the most sensitive. However, the reporter gene assays did not detect significant thyroid activity in any of the water samples, suggesting that activation or inhibition of the thyroid hormone receptor is not a relevant mode of action for thyroid endocrine disruptors in water. The thyroperoxidase (TPO) inhibition assay and transthyretin (TTR) displacement assay (FITC) detected activity in the surface water and treated wastewater samples, but more work is required to assess if this activity is a true measure of thyroid activity or matrix interference. The whole animal Xenopus Embryonic Thyroid Assay (XETA) detected some activity in the unspiked surface water and treated wastewater extracts, but not in unspiked drinking water, and appears to be a suitable assay to detect thyroid activity in environmental waters.


Asunto(s)
Bioensayo/normas , Disruptores Endocrinos/análisis , Hormonas Tiroideas/metabolismo , Contaminantes Químicos del Agua/análisis , Animales , Autoantígenos , Genes Reporteros , Yoduro Peroxidasa , Proteínas de Unión a Hierro , Glándula Tiroides/efectos de los fármacos , Xenopus laevis
20.
Biochem J ; 393(Pt 1): 397-409, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16201967

RESUMEN

Nkx3.1 is a homeodomain-containing transcription factor that is expressed early in the development of the prostate gland and is believed to play an important role in the differentiation of prostatic epithelia. Loss of Nkx3.1 protein expression is often an early event in prostate tumorigenesis, and the abundance of Nkx3.1-negative epithelial cells increases with disease progression. In a number of systems, homeodomain proteins collaborate with zinc-finger-containing transcription factors to bind and regulate target genes. In the present paper, we report that Nkx3.1 collaborates with Sp-family members in the regulation of PSA (prostate-specific antigen) in prostate-derived cells. Nkx3.1 forms protein complexes with Sp proteins that are dependent on their respective DNA-binding domains and an N-terminal segment of Nkx3.1, and Nkx3.1 negatively regulates Sp-mediated transcription via Trichostatin A-sensitive and -insensitive mechanisms. A distal 1000 bp portion of the PSA promoter is required for transrepression by Nkx3.1, although Nkx3.1 DNA-binding activity is itself not required. We conclude that Nkx3.1 negatively regulates Sp-mediated transcription via the tethering of histone deacetylases and/or by inhibiting the association of Sp proteins with co-activators.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Próstata/citología , Factores de Transcripción Sp/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Regiones Promotoras Genéticas , Antígeno Prostático Específico/metabolismo , Factores de Transcripción Sp/genética , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA