Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(7): 3667-3681, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321961

RESUMEN

The Wnt/ß-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/ß-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that ß-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents ß-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, ß-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via ß-Catenin protein stabilization. Altogether, by inscribing LSD1 and ß-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/ß-Catenin signaling and LSD1 on stem cell fate.


Asunto(s)
Autorrenovación de las Células , Histona Demetilasas , Vía de Señalización Wnt , beta Catenina , Animales , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Autorrenovación de las Células/genética , Núcleo Celular/metabolismo , Huso Acromático/metabolismo , Diferenciación Celular/genética , Humanos , Células Madre/metabolismo , Células Madre/citología
2.
Nucleic Acids Res ; 52(6): 3031-3049, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38281187

RESUMEN

Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.


Asunto(s)
Envejecimiento Prematuro , Histonas , Fibras Musculares Esqueléticas , Animales , Ratones , Envejecimiento Prematuro/genética , ADN , Roturas del ADN de Doble Cadena , Histonas/genética , Histonas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nucleosomas
3.
Brain ; 146(8): 3470-3483, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454683

RESUMEN

Distal hereditary motor neuropathy represents a group of motor inherited neuropathies leading to distal weakness. We report a family of two brothers and a sister affected by distal hereditary motor neuropathy in whom a homozygous variant c.3G>T (p.1Met?) was identified in the COQ7 gene. This gene encodes a protein required for coenzyme Q10 biosynthesis, a component of the respiratory chain in mitochondria. Mutations of COQ7 were previously associated with severe multi-organ disorders characterized by early childhood onset and developmental delay. Using patient blood samples and fibroblasts derived from a skin biopsy, we investigated the pathogenicity of the variant of unknown significance c.3G>T (p.1Met?) in the COQ7 gene and the effect of coenzyme Q10 supplementation in vitro. We showed that this variation leads to a severe decrease in COQ7 protein levels in the patient's fibroblasts, resulting in a decrease in coenzyme Q10 production and in the accumulation of 6-demethoxycoenzyme Q10, the COQ7 substrate. Interestingly, such accumulation was also found in the patient's plasma. Normal coenzyme Q10 and 6-demethoxycoenzyme Q10 levels were restored in vitro by using the coenzyme Q10 precursor 2,4-dihydroxybenzoic acid, thus bypassing the COQ7 requirement. Coenzyme Q10 biosynthesis deficiency is known to impair the mitochondrial respiratory chain. Seahorse experiments showed that the patient's cells mainly rely on glycolysis to maintain sufficient ATP production. Consistently, the replacement of glucose by galactose in the culture medium of these cells reduced their proliferation rate. Interestingly, normal proliferation was restored by coenzyme Q10 supplementation of the culture medium, suggesting a therapeutic avenue for these patients. Altogether, we have identified the first example of recessive distal hereditary motor neuropathy caused by a homozygous variation in the COQ7 gene, which should thus be included in the gene panels used to diagnose peripheral inherited neuropathies. Furthermore, 6-demethoxycoenzyme Q10 accumulation in the blood can be used to confirm the pathogenic nature of the mutation. Finally, supplementation with coenzyme Q10 or derivatives should be considered to prevent the progression of COQ7-related peripheral inherited neuropathy in diagnosed patients.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Masculino , Humanos , Preescolar , Ubiquinona/uso terapéutico , Mutación/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Ataxia/genética
4.
Acta Neuropathol ; 144(4): 707-731, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948834

RESUMEN

Congenital myasthenic syndromes (CMS) are predominantly characterized by muscle weakness and fatigability and can be caused by a variety of mutations in genes required for neuromuscular junction formation and maintenance. Among them, AGRN encodes agrin, an essential synaptic protein secreted by motoneurons. We have identified severe CMS patients with uncharacterized p.R1671Q, p.R1698P and p.L1664P mutations in the LG2 domain of agrin. Overexpression in primary motoneurons cultures in vitro and in chick spinal motoneurons in vivo revealed that the mutations modified agrin trafficking, leading to its accumulation in the soma and/or in the axon. Expression of mutant agrins in cultured cells demonstrated accumulation of agrin in the endoplasmic reticulum associated with induction of unfolded protein response (UPR) and impaired secretion in the culture medium. Interestingly, evaluation of the specific activity of individual agrins on AChR cluster formation indicated that when secreted, mutant agrins retained a normal capacity to trigger the formation of AChR clusters. To confirm agrin accumulation and secretion defect, iPS cells were derived from a patient and differentiated into motoneurons. Patient iPS-derived motoneurons accumulated mutant agrin in the soma and increased XBP1 mRNA splicing, suggesting UPR activation. Moreover, co-cultures of patient iPS-derived motoneurons with myotubes confirmed the deficit in agrin secretion and revealed a reduction in motoneuron survival. Altogether, we report the first mutations in AGRN gene that specifically affect agrin secretion by motoneurons. Interestingly, the three patients carrying these mutations were initially suspected of spinal muscular atrophy (SMA). Therefore, in the presence of patients with a clinical presentation of SMA but without mutation in the SMN1 gene, it can be worth to look for mutations in AGRN.


Asunto(s)
Agrina , Síndromes Miasténicos Congénitos , Agrina/genética , Humanos , Neuronas Motoras/metabolismo , Mutación , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Unión Neuromuscular/metabolismo
5.
Nucleic Acids Res ; 48(9): 4601-4613, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32266374

RESUMEN

While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.


Asunto(s)
Histonas/fisiología , Músculo Esquelético/metabolismo , Transcripción Genética , Activación Transcripcional , Animales , Diferenciación Celular , Células Cultivadas , Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Histonas/genética , Histonas/metabolismo , Ratones , Fibras Musculares Esqueléticas , Músculo Esquelético/citología , RNA-Seq , Secuencias Repetitivas de Ácidos Nucleicos , Sitio de Iniciación de la Transcripción
6.
Hum Mutat ; 41(12): 2167-2178, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33131162

RESUMEN

Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.


Asunto(s)
Feto/anomalías , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis Citogenético , Familia , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Mutación/genética , Linaje
7.
Clin Genet ; 98(6): 589-594, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33111339

RESUMEN

The aim of this study was to provide an efficient tool: reliable, able to increase the molecular diagnosis performance, to facilitate the detection of copy number variants (CNV), to assess genetic risk scores (wGRS) and to offer the opportunity to explore candidate genes. Custom SeqCap EZ libraries, NextSeq500 sequencing and a homemade pipeline enable the analysis of 311 dyslipidemia-related genes. In the training group (48 DNA from patients with a well-established molecular diagnosis), this next-generation sequencing (NGS) workflow showed an analytical sensitivity >99% (n = 532 variants) without any false negative including a partial deletion of one exon. In the prospective group, from 25 DNA from patients without prior molecular analyses, 18 rare variants were identified in the first intention panel genes, allowing the diagnosis of monogenic dyslipidemia in 11 patients. In six other patients, the analysis of minor genes and wGRS determination provided a hypothesis to explain the dyslipidemia. Remaining data from the whole NGS workflow identified four patients with potentially deleterious variants. This NGS process gives a major opportunity to accede to an enhanced understanding of the genetic of dyslipidemia by simultaneous assessment of multiple genetic determinants.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Dislipidemias/genética , Enfermedades Genéticas Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Dislipidemias/diagnóstico , Dislipidemias/patología , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Pruebas Genéticas , Humanos , Masculino , Análisis de Secuencia de ADN/métodos
8.
Hum Mutat ; 40(11): 1993-2000, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31230393

RESUMEN

Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Retroelementos , Adolescente , Adulto , Anciano , Niño , Preescolar , Pruebas Diagnósticas de Rutina , Femenino , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Ann Neurol ; 83(5): 926-934, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29630738

RESUMEN

OBJECTIVE: Cut homeodomain transcription factor CUX2 plays an important role in dendrite branching, spine development, and synapse formation in layer II to III neurons of the cerebral cortex. We identify a recurrent de novo CUX2 p.Glu590Lys as a novel genetic cause for developmental and epileptic encephalopathy (DEE). METHODS: The de novo p.Glu590Lys variant was identified by whole-exome sequencing (n = 5) or targeted gene panel (n = 4). We performed electroclinical and imaging phenotyping on all patients. RESULTS: The cohort comprised 7 males and 2 females. Mean age at study was 13 years (0.5-21.0). Median age at seizure onset was 6 months (2 months to 9 years). Seizure types at onset were myoclonic, atypical absence with myoclonic components, and focal seizures. Epileptiform activity on electroencephalogram was seen in 8 cases: generalized polyspike-wave (6) or multifocal discharges (2). Seizures were drug resistant in 7 or controlled with valproate (2). Six patients had a DEE: myoclonic DEE (3), Lennox-Gastaut syndrome (2), and West syndrome (1). Two had a static encephalopathy and genetic generalized epilepsy, including absence epilepsy in 1. One infant had multifocal epilepsy. Eight had severe cognitive impairment, with autistic features in 6. The p.Glu590Lys variant affects a highly conserved glutamine residue in the CUT domain predicted to interfere with CUX2 binding to DNA targets during neuronal development. INTERPRETATION: Patients with CUX2 p.Glu590Lys display a distinctive phenotypic spectrum, which is predominantly generalized epilepsy, with infantile-onset myoclonic DEE at the severe end and generalized epilepsy with severe static developmental encephalopathy at the milder end of the spectrum. Ann Neurol 2018;83:926-934.


Asunto(s)
Epilepsias Mioclónicas/genética , Proteínas de Homeodominio/genética , Fenotipo , Convulsiones/genética , Adolescente , Niño , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Femenino , Humanos , Lactante , Masculino , Adulto Joven
10.
J Biol Chem ; 290(7): 4215-24, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25516595

RESUMEN

Skeletal muscle atrophy is a severe condition of muscle mass loss. Muscle atrophy is caused by a down-regulation of protein synthesis and by an increase of protein breakdown due to the ubiquitin-proteasome system and autophagy activation. Up-regulation of specific genes, such as the muscle-specific E3 ubiquitin ligase MAFbx, by FoxO transcription factors is essential to initiate muscle protein ubiquitination and degradation during atrophy. HDAC6 is a particular HDAC, which is functionally related to the ubiquitin proteasome system via its ubiquitin binding domain. We show that HDAC6 is up-regulated during muscle atrophy. HDAC6 activation is dependent on the transcription factor FoxO3a, and the inactivation of HDAC6 in mice protects against muscle wasting. HDAC6 is able to interact with MAFbx, a key ubiquitin ligase involved in muscle atrophy. Our findings demonstrate the implication of HDAC6 in skeletal muscle wasting and identify HDAC6 as a new downstream target of FoxO3a in stress response. This work provides new insights in skeletal muscle atrophy development and opens interesting perspectives on HDAC6 as a valuable marker of muscle atrophy and a potential target for pharmacological treatments.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Histona Desacetilasa 6 , Histona Desacetilasas/química , Histona Desacetilasas/genética , Humanos , Inmunoprecipitación , Integrasas/metabolismo , Ratones , Ratones Noqueados , Desnervación Muscular , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
EMBO Rep ; 14(4): 356-63, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23429341

RESUMEN

The DNA-binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/ß-catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, ß-catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced ß-catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/ß-catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis.


Asunto(s)
Regulación de la Expresión Génica , Homeostasis del Telómero , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Vía de Señalización Wnt , Animales , Sitios de Unión , Femenino , Expresión Génica , Células HCT116 , Humanos , Masculino , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Transcriptoma , beta Catenina/metabolismo
13.
Brain ; 136(Pt 8): 2359-68, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23824486

RESUMEN

Amyotrophic lateral sclerosis is a typically rapidly progressive neurodegenerative disorder affecting motor neurons leading to progressive muscle paralysis and death, usually from respiratory failure, in 3-5 years. Some patients have slow disease progression and prolonged survival, but the underlying mechanisms remain poorly understood. Riluzole, the only approved treatment, only modestly prolongs survival and has no effect on muscle function. In the early phase of the disease, motor neuron loss is initially compensated for by collateral reinnervation, but over time this compensation fails, leading to progressive muscle wasting. The crucial role of muscle histone deacetylase 4 and its regulator microRNA-206 in compensatory reinnervation and disease progression was recently suggested in a mouse model of amyotrophic lateral sclerosis (transgenic mice carrying human mutations in the superoxide dismutase gene). Here, we sought to investigate whether the microRNA-206-histone deacetylase 4 pathway plays a role in muscle compensatory reinnervation in patients with amyotrophic lateral sclerosis and thus contributes to disease outcome differences. We studied muscle reinnervation using high-resolution confocal imaging of neuromuscular junctions in muscle samples obtained from 11 patients with amyotrophic lateral sclerosis, including five long-term survivors. We showed that the proportion of reinnervated neuromuscular junctions was significantly higher in long-term survivors than in patients with rapidly progressive disease. We analysed the expression of muscle candidate genes involved in the reinnervation process and showed that histone deacetylase 4 upregulation was significantly greater in patients with rapidly progressive disease and was negatively correlated with the extent of muscle reinnervation and functional outcome. Conversely, the proposed regulator of histone deacetylase 4, microRNA-206, was upregulated in both patient groups, but did not correlate with disease progression or reinnervation. We conclude that muscle expression of histone deacetylase 4 may be a key factor for muscle reinnervation and disease progression in patients with amyotrophic lateral sclerosis. Specific histone deacetylase 4 inhibitors may then constitute a therapeutic approach to enhancing motor performance and slowing disease progression in amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Histona Desacetilasas/genética , MicroARNs/genética , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación , Proteínas Represoras/genética , Adulto , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Progresión de la Enfermedad , Femenino , Histona Desacetilasas/metabolismo , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Proteínas Represoras/metabolismo , Sobrevivientes , Regulación hacia Arriba
14.
Proc Natl Acad Sci U S A ; 108(20): 8305-10, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21527717

RESUMEN

Methylation of histone H3 lysine 4 (H3K4me), a mark associated with gene activation, is mediated by SET1 and the related mixed lineage leukemia (MLL) histone methyltransferases (HMTs) across species. Mammals contain seven H3K4 HMTs, Set1A, Set1B, and MLL1-MLL5. The activity of SET1 and MLL proteins relies on protein-protein interactions within large multisubunit complexes that include three core components: RbBP5, Ash2L, and WDR5. It remains unclear how the composition and specificity of these complexes varies between cell types and during development. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RbBP5, Ash2L, and WDR5. Here we show that SET-2 is responsible for the majority of bulk H3K4 methylation at all developmental stages. However, SET-2 and absent, small, or homeotic discs 2 (ASH-2) are differentially required for tri- and dimethylation of H3K4 (H3K4me3 and -me2) in embryos and adult germ cells. In embryos, whereas efficient H3K4me3 requires both SET-2 and ASH-2, H3K4me2 relies mostly on ASH-2. In adult germ cells by contrast, SET-2 serves a major role whereas ASH-2 is dispensable for H3K4me3 and most H3K4me2. Loss of SET-2 results in progressive sterility over several generations, suggesting an important function in the maintenance of a functional germ line. This study demonstrates that individual subunits of SET1-related complexes can show tissue specificity and developmental regulation and establishes C. elegans as a model to study SET1-related complexes in a multicellular organism.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Embrión no Mamífero/metabolismo , Células Germinativas/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Proteínas Nucleares/fisiología , Animales , Lisina/metabolismo , Metilación , Proteínas de Saccharomyces cerevisiae/fisiología
15.
Leukemia ; 38(2): 420-423, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38135759

RESUMEN

High-throughput sequencing plays a pivotal role in hematological malignancy diagnostics, but interpreting missense mutations remains challenging. In this study, we used the newly available AlphaMissense database to assess the efficacy of machine learning to predict missense mutation effects and its impact to improve our ability to interpret them. Based on the analysis of 2073 variants from 686 patients analyzed for clinical purpose, we confirmed the very high accuracy of AlphaMissense predictions in a large real-life data set of missense mutations (AUC of ROC curve 0.95), and provided a comprehensive analysis of the discrepancies between AlphaMissense predictions and state of the art clinical interpretation.


Asunto(s)
Biología Computacional , Neoplasias Hematológicas , Humanos , Mutación Missense , Aprendizaje Automático , Curva ROC , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética
16.
Blood ; 118(5): 1316-22, 2011 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-21355086

RESUMEN

Cells of B-cell chronic lymphocytic leukemia (B-CLL) are characterized by short telomeres despite a low proliferative index. Because telomere length has been reported to be a valuable prognosis criteria, there is a great interest in a deep understanding of the origin and consequences of telomere dysfunction in this pathology. Cases of chromosome fusion involving extremely short telomeres have been reported at advanced stage. In the present study, we address the question of the existence of early telomere dysfunction during the B-CLL time course. In a series restricted to 23 newly diagnosed Binet stage A CLL patients compared with 12 healthy donors, we found a significant increase in recruitment of DNA-damage factors to telomeres showing telomere dysfunction in the early stage of the disease. Remarkably, the presence of dysfunctional telomeres did not correlate with telomere shortening or chromatin marks deregulation but with a down-regulation of 2 shelterin genes: ACD (coding for TPP1; P = .0464) and TINF2 (coding for TIN2; P = .0177). We propose that telomeric deprotection in the early step of CLL is not merely the consequence of telomere shortening but also of shelterin alteration.


Asunto(s)
Daño del ADN/fisiología , Leucemia Linfocítica Crónica de Células B/genética , Proteínas de Unión a Telómeros/genética , Telómero/patología , Secuencia de Bases , Estudios de Cohortes , Progresión de la Enfermedad , Regulación Leucémica de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Modelos Biológicos , Datos de Secuencia Molecular , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Complejo Shelterina , Telómero/genética , Proteínas de Unión a Telómeros/metabolismo
17.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067175

RESUMEN

Sarcoidosis is a multisystemic disease characterized by non-caseating granuloma infiltrating various organs. The form with symptomatic muscular involvement is called muscular sarcoidosis. The impact of immune cells composing the granuloma on the skeletal muscle is misunderstood. Here, we investigated the granuloma-skeletal muscle interactions through spatial transcriptomics on two patients affected by muscular sarcoidosis. Five major transcriptomic clusters corresponding to perigranuloma, granuloma, and three successive muscle tissue areas (proximal, intermediate, and distal) around the granuloma were identified. Analyses revealed upregulated pathways in the granuloma corresponding to the activation of T-lymphocytes and monocytes/macrophages cytokines, the upregulation of extracellular matrix signatures, and the induction of the TGF-ß signaling in the perigranuloma. A comparison between the proximal and distal muscles to the granuloma revealed an inverse correlation between the distance to the granuloma and the upregulation of cellular response to interferon-γ/α, TNF-α, IL-1,4,6, fibroblast proliferation, epithelial to mesenchymal cell transition, and the downregulation of muscle gene expression. These data shed light on the intercommunications between granulomas and the muscle tissue and provide pathophysiological mechanisms by showing that granuloma immune cells have a direct impact on proximal muscle tissue by promoting its progressive replacement by fibrosis via the expression of pro-inflammatory and profibrosing signatures. These data could possibly explain the evolution towards a state of disability for some patients.


Asunto(s)
Sarcoidosis , Humanos , Sarcoidosis/genética , Sarcoidosis/patología , Granuloma , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Perfilación de la Expresión Génica
18.
Elife ; 122023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37227756

RESUMEN

Promyelocytic leukemia Nuclear Bodies (PML NBs) are nuclear membrane-less organelles physically associated with chromatin underscoring their crucial role in genome function. The H3.3 histone chaperone complex HIRA accumulates in PML NBs upon senescence, viral infection or IFN-I treatment in primary cells. Yet, the molecular mechanisms of this partitioning and its function in regulating histone dynamics have remained elusive. By using specific approaches, we identify intermolecular SUMO-SIM interactions as an essential mechanism for HIRA recruitment in PML NBs. Hence, we describe a role of PML NBs as nuclear depot centers to regulate HIRA distribution in the nucleus, dependent both on SP100 and DAXX/H3.3 levels. Upon IFN-I stimulation, PML is required for interferon-stimulated genes (ISGs) transcription and PML NBs become juxtaposed to ISGs loci at late time points of IFN-I treatment. HIRA and PML are necessary for the prolonged H3.3 deposition at the transcriptional end sites of ISGs, well beyond the peak of transcription. Though, HIRA accumulation in PML NBs is dispensable for H3.3 deposition on ISGs. We thus uncover a dual function for PML/PML NBs, as buffering centers modulating the nuclear distribution of HIRA, and as chromosomal hubs regulating ISGs transcription and thus HIRA-mediated H3.3 deposition at ISGs upon inflammatory response.


Asunto(s)
Interferón Tipo I , Cuerpos Nucleares de la Leucemia Promielocítica , Humanos , Ratones , Cromatina , Histonas/genética , Interferón Tipo I/genética , Factores de Transcripción/metabolismo , Animales
19.
Elife ; 102021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34219648

RESUMEN

Uropathogenic Escherichia coli (UPEC) proliferate within superficial bladder umbrella cells to form intracellular bacterial communities (IBCs) during early stages of urinary tract infections. However, the dynamic responses of IBCs to host stresses and antibiotic therapy are difficult to assess in situ. We develop a human bladder-chip model wherein umbrella cells and bladder microvascular endothelial cells are co-cultured under flow in urine and nutritive media respectively, and bladder filling and voiding mimicked mechanically by application and release of linear strain. Using time-lapse microscopy, we show that rapid recruitment of neutrophils from the vascular channel to sites of infection leads to swarm and neutrophil extracellular trap formation but does not prevent IBC formation. Subsequently, we tracked bacterial growth dynamics in individual IBCs through two cycles of antibiotic administration interspersed with recovery periods which revealed that the elimination of bacteria within IBCs by the antibiotic was delayed, and in some instances, did not occur at all. During the recovery period, rapid proliferation in a significant fraction of IBCs reseeded new foci of infection through bacterial shedding and host cell exfoliation. These insights reinforce a dynamic role for IBCs as harbors of bacterial persistence, with significant consequences for non-compliance with antibiotic regimens.


Urinary tract infections are one of the most common reasons people need antibiotics. These bacterial infections are typically caused by uropathogenic Escherichia coli (also known as UPEC), which either float freely in the urine and wash away when the bladder empties, or form communities inside cells that the bladder struggles to clear. It is possible that the bacteria living within cells are also more protected from the immune system and antibiotics. But this is hard to study in animal models. To overcome this, Sharma et al. built a 'bladder-chip' which mimics the interface between the blood vessels and the tissue layers of the human bladder. Similar chip devices have also been made for other organs. However, until now, no such model had been developed for the bladder. On the chip created by Sharma et al. is a layer of bladder cells which sit at the bottom of a channel filled with diluted human urine. These cells were infected with UPEC, and then imaged over time to see how the bacteria moved, interacted with the bladder cells, and aggregated together. Immune cells from human blood were then added to a vascular channel underneath the bladder tissue, which is coated with endothelial cells that normally line blood vessels. The immune cells rapidly crossed the endothelial barrier and entered the bladder tissue, and swarmed around sites of infection. In some instances, they released the contents of their cells to form net-like traps to catch the bacteria. But these traps failed to remove the bacteria living inside bladder cells. Antibiotics were then added to the urine flowing over the bladder cells as well as the vascular channel, similar to how drugs would be delivered in live human tissue. Sharma et al. discovered that the antibiotics killed bacteria residing in bladder cells slower than bacteria floating freely in the urine. Furthermore, they found that bacteria living in tightly packed communities within bladder cells were more likely to survive treatment and go on to re-infect other parts of the tissue. Antibiotic resistance is a pressing global challenge, and recurrent urinary tract infections are a significant contributor. The bladder-chip presented here could further our understanding of how these bacterial infections develop in vivo and how good antibiotics are at removing them. This could help researchers identify the best dosing and treatment strategies, as well as provide a platform for rapidly testing new antibiotic drugs and other therapies.


Asunto(s)
Técnicas Bacteriológicas/instrumentación , Dispositivos Laboratorio en un Chip , Vejiga Urinaria/irrigación sanguínea , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena , Línea Celular Tumoral , Técnicas de Cocultivo , Células Endoteliales/fisiología , Humanos , Neutrófilos/fisiología
20.
Hemasphere ; 5(2): e522, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33880432

RESUMEN

RNA sequencing holds great promise to improve the diagnostic of hematological malignancies, because this technique enables to detect fusion transcripts, to look for somatic mutations in oncogenes, and to capture transcriptomic signatures of nosological entities. However, the analytical performances of targeted RNA sequencing have not been extensively described in diagnostic samples. Using a targeted panel of 1385 cancer-related genes in a series of 100 diagnosis samples and 8 controls, we detected all the already known fusion transcripts and also discovered unknown and/or unsuspected fusion transcripts in 12 samples. Regarding the analysis of transcriptomic profiles, we show that targeted RNA sequencing is performant to discriminate acute lymphoblastic leukemia entities driven by different oncogenic translocations. Additionally, we show that 86% of the mutations identified at the DNA level are also detectable at the messenger RNA (mRNA) level, except for nonsense mutations that are subjected to mRNA decay. We conclude that targeted RNA sequencing might improve the diagnosis of hematological malignancies. Standardization of the preanalytical steps and further refinements of the panel design and of the bioinformatical pipelines will be an important step towards its use in standard diagnostic procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA