Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochem Soc Trans ; 42(2): 295-301, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24646234

RESUMEN

Popdc (Popeye-domain-containing) genes encode membrane-bound proteins and are abundantly present in cardiac myocytes and in skeletal muscle fibres. Functional analysis of Popdc1 (Bves) and Popdc2 in mice and of popdc2 in zebrafish revealed an overlapping role for proper electrical conduction in the heart and maintaining structural integrity of skeletal muscle. Popdc proteins mediate cAMP signalling and modulate the biological activity of interacting proteins. The two-pore channel TREK-1 interacts with all three Popdc proteins. In Xenopus oocytes, the presence of Popdc proteins causes an enhanced membrane transport leading to an increase in TREK-1 current, which is blocked when cAMP levels are increased. Another important Popdc-interacting protein is caveolin 3, and the loss of Popdc1 affects caveolar size. Thus a family of membrane-bound cAMP-binding proteins has been identified, which modulate the subcellular localization of effector proteins involved in organizing signalling complexes and assuring proper membrane physiology of cardiac myocytes.


Asunto(s)
Proteínas Musculares/metabolismo , Miocardio/metabolismo , Animales , Arritmias Cardíacas/metabolismo , Caveolina 3/metabolismo , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo
2.
Dev Dyn ; 241(8): 1310-24, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22674535

RESUMEN

BACKGROUND: 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans, characterized by cardiovascular defects such as interrupted aortic arch, outflow tract defects, thymus and parathyroid hypo- or aplasia, and cleft palate. Heterozygosity of Tbx1, the mouse homolog of the candidate TBX1 gene, results in mild defects dependent on genetic background, whereas complete inactivation results in severe malformations in multiple tissues. RESULTS: The loss of function of two Sprouty genes, which encode feedback antagonists of receptor tyrosine kinase (RTK) signaling, phenocopy many defects associated with 22q11DS in the mouse. The stepwise reduction of Sprouty gene dosage resulted in different phenotypes emerging at specific steps, suggesting that the threshold up to which a given developmental process can tolerate increased RTK signaling is different. Tbx1 heterozygosity significantly exacerbated the severity of all these defects, which correlated with a substantial increase in RTK signaling. CONCLUSIONS: Our findings suggest that TBX1 functions as an essential component of a mechanism that protects the embryo against perturbations in RTK signaling that may lead to developmental defects characteristic of 22q11DS. We propose that genetic factors that enhance RTK signaling ought to be considered as potential genetic modifiers of this syndrome.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas de Dominio T Box/metabolismo , Alelos , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Ratones Mutantes , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Proteínas de Dominio T Box/genética
3.
Dev Biol ; 358(1): 147-55, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21806979

RESUMEN

Fibroblast growth factor (FGF) signalling has important roles in the development of the embryonic pharyngeal (branchial) arches, but its effects on innervation of the arches and associated structures have not been studied extensively. We investigated the consequences of deleting two receptor tyrosine kinase (RTK) antagonists of the Sprouty (Spry) gene family on the early development of the branchial nerves. The morphology of the facial, glossopharyngeal and vagus nerves are abnormal in Spry1-/-;Spry2-/- embryos. We identify specific defects in the epibranchial placodes and neural crest, which contribute sensory neurons and glia to these nerves. A dissection of the tissue-specific roles of these genes in branchial nerve development shows that Sprouty gene deletion in the pharyngeal epithelia can affect both placode formation and neural crest fate. However, epithelial-specific gene deletion only results in defects in the facial nerve and not the glossopharyngeal and vagus nerves, suggesting that the facial nerve is most sensitive to perturbations in RTK signalling. Reducing the Fgf8 gene dosage only partially rescued defects in the glossopharyngeal nerve and was not sufficient to rescue facial nerve defects, suggesting that FGF8 is functionally redundant with other RTK ligands during facial nerve development.


Asunto(s)
Región Branquial/inervación , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Ganglios Sensoriales/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/fisiología , Fosfoproteínas/fisiología , Transducción de Señal/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Región Branquial/embriología , Nervio Facial/anomalías , Factor 8 de Crecimiento de Fibroblastos/genética , Genotipo , Nervio Glosofaríngeo/anomalías , Haploinsuficiencia , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Cresta Neural/embriología , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas , Nervio Vago/anomalías
4.
Dev Biol ; 322(1): 74-85, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18687324

RESUMEN

We have previously shown that lmx1b, a LIM homeodomain protein, is expressed in the pronephric glomus. We now show temporal and spatial expression patterns of lmx1b and its potential binding partners in both dissected pronephric anlagen and in individual dissected components of stage 42 pronephroi. Morpholino oligonucleotide knock-down of lmx1b establishes a role for lmx1b in the development of the pronephric components. Depletion of lmx1b results in the formation of a glomus with reduced size. Pronephric tubules were also shown to be reduced in structure and/or coiling whereas more distal tubule structure was unaffected. Over-expression of lmx1b mRNA resulted in no significant phenotype. Given that lmx1b protein is known to function as a heterodimer, we have over-expressed lmx1b mRNA alone or in combination with potential interacting molecules and analysed the effects on kidney structures. Phenotypes observed by over-expression of lim1 and ldb1 are partially rescued by co-injection with lmx1b mRNA. Animal cap experiments confirm that co-injection of lmx1b with potential binding partners can up-regulate pronephric molecular markers suggesting that lmx1b lies upstream of wt1 in the gene network controlling glomus differentiation. This places lmx1b in a genetic hierarchy involved in pronephros development and suggests that it is the balance in levels of binding partners together with restricted expression domains of lmx1b and lim1 which influences differentiation into glomus or tubule derivatives in vivo.


Asunto(s)
Proteínas de Homeodominio/fisiología , Riñón/embriología , Riñón/metabolismo , Factores de Transcripción/fisiología , Xenopus laevis/embriología , Animales , Técnicas de Cultivo de Célula , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Marcación de Gen , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Riñón/citología , Proteínas con Homeodominio LIM , Microinyecciones , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
5.
Int J Dev Biol ; 49(1): 59-63, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15744669

RESUMEN

The basic helix-loop-helix transcription factor, Pod 1, has been shown to be expressed in the mesenchyme of many developing mouse organs, including the heart, lungs and gut. In the kidneys of developing mice, Pod 1 is highly expressed in the condensing metanephric mesenchyme, differentiating and late stromal cells and in developing podocytes. We have obtained an EST (CF270487) which contains the Xenopus laevis Pod 1 sequence. Conceptual translation of the Xenopus laevis Pod 1 sequence shows approximately 85% similarity to other vertebrate homologues. RT-PCR indicates that expression is initiated at stage 13 and increases differentially in the developing pronephros compared to the whole embryo. RT-PCR of a kidney dissection at stage 42 shows higher expression in the glomus than in the tubule or duct. In situ hybridisation analysis at tail bud stages shows the anterior-most branchial arch and pronephric glomus are intensely stained. At stage 40, staining persists in the glomus and in the epicardium region of the heart. Adult organ analysis shows expression is highest in the rectum and the spleen, with significant expression in the duodenum, heart, kidney, lungs, pancreas, skin, liver and muscle.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Transcripción/biosíntesis , Proteínas de Xenopus/biosíntesis , Secuencia de Aminoácidos , Animales , Femenino , Perfilación de la Expresión Génica , Secuencias Hélice-Asa-Hélice/genética , Humanos , Riñón/embriología , Riñón/metabolismo , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos , Ratas , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis
6.
J Clin Invest ; 126(1): 239-53, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26642364

RESUMEN

The Popeye domain-containing 1 (POPDC1) gene encodes a plasma membrane-localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1(S201F) displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1(S201F) and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1(S201F) in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1(S191F)) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases.


Asunto(s)
Arritmias Cardíacas/etiología , Proteínas de la Membrana/genética , Distrofia Muscular de Cinturas/etiología , Anciano , Anciano de 80 o más Años , Animales , Moléculas de Adhesión Celular , Niño , AMP Cíclico/metabolismo , Humanos , Masculino , Potenciales de la Membrana , Proteínas de la Membrana/fisiología , Persona de Mediana Edad , Proteínas Musculares , Mutación , Canales de Potasio de Dominio Poro en Tándem/análisis , Transporte de Proteínas , Pez Cebra
7.
J Cardiovasc Dev Dis ; 1(1): 121-133, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-27500161

RESUMEN

3'-5'-cyclic adenosine monophosphate (cAMP) is a second messenger, which plays an important role in the heart. It is generated in response to activation of G-protein-coupled receptors (GPCRs). Initially, it was thought that protein kinase A (PKA) exclusively mediates cAMP-induced cellular responses such as an increase in cardiac contractility, relaxation, and heart rate. With the identification of the exchange factor directly activated by cAMP (EPAC) and hyperpolarizing cyclic nucleotide-gated (HCN) channels as cAMP effector proteins it became clear that a protein network is involved in cAMP signaling. The Popeye domain containing (Popdc) genes encode yet another family of cAMP-binding proteins, which are prominently expressed in the heart. Loss-of-function mutations in mice are associated with cardiac arrhythmia and impaired skeletal muscle regeneration. Interestingly, the cardiac phenotype, which is present in both, Popdc1 and Popdc2 null mutants, is characterized by a stress-induced sinus bradycardia, suggesting that Popdc proteins participate in cAMP signaling in the sinuatrial node. The identification of the two-pore channel TREK-1 and Caveolin 3 as Popdc-interacting proteins represents a first step into understanding the mechanisms of heart rate modulation triggered by Popdc proteins.

8.
Trends Cardiovasc Med ; 23(7): 257-63, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23562093

RESUMEN

An intricate network of ion channels and pumps are involved in generating a diastolic pacemaker potential, which is transmitted to the working myocardium with the help of the cardiac conduction system. The principles of cardiac pacemaking are reasonably well understood, however, the mechanism by which the heart increases its beating frequency in response to adrenergic stimulation has not been fully worked out. The Popeye domain-containing (Popdc) genes encode plasma membrane-localized proteins that are able to bind cAMP with high affinity; mice with null mutations in Popdc1 or 2 have a stress-induced pacemaker dysfunction. The phenotype in both mutants develops in an age-dependent manner and thus may model pacemaker dysfunction in man, as well as provide novel mechanistic insights into the process of pacemaker adaptation to stress.


Asunto(s)
Moléculas de Adhesión Celular , Sistema de Conducción Cardíaco/metabolismo , Proteínas Musculares , Miocardio/metabolismo , Adaptación Fisiológica , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Humanos , Canales Iónicos/metabolismo , Ratones , Modelos Biológicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Estrés Fisiológico/fisiología
9.
Cardiovasc Diagn Ther ; 2(4): 308-19, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24282731

RESUMEN

The Popeye domain containing (Popdc) gene family displays preferential expression in skeletal muscle and heart. Only recently a significant gain in the understanding of the function of Popdc genes in the heart has been obtained. The Popdc genes encode membrane proteins harboring an evolutionary conserved Popeye domain, which functions as a binding domain for cyclic adenosine monophosphate (cAMP). Popdc proteins interact with the two-pore channel TREK-1 and enhance its current. This protein interaction is modulated by cAMP. Null mutations of members of the Popdc gene family in zebrafish and mouse are associated with severe cardiac arrhythmia phenotypes. While in zebrafish an atrioventricular block was prevalent, in mouse a stress-induced sinus bradycardia was observed, which was due to the presence of sinus pauses. Moreover, the phenotype develops in an age-dependent manner, being absent in the young animal and becoming increasingly severe, as the animals grow older. This phenotype is reminiscent of the sick sinus syndrome (SSS), which affects mostly the elderly and is characterized by the poor ability of the cardiac pacemaker to adapt the heart rate to the physiological demand. While being a prevalent disease, which is responsible for a large fraction of pacemaker implantations in Western countries, SSS is poorly understood at the molecular level. It is therefore expected that the study of the molecular basis of the stress-induced bradycardia in Popdc mice will shed new light on the etiology of pacemaker disease.

10.
J Clin Invest ; 122(3): 1119-30, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22354168

RESUMEN

Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas Musculares/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Relojes Biológicos , Bradicardia/genética , Electrocardiografía/métodos , Electrofisiología/métodos , Frecuencia Cardíaca , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Estructura Terciaria de Proteína , Telemetría/métodos , Factores de Tiempo
11.
J Clin Invest ; 119(11): 3301-10, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19855134

RESUMEN

Aortic arch artery patterning defects account for approximately 20% of congenital cardiovascular malformations and are observed frequently in velocardiofacial syndrome (VCFS). In the current study, we screened for chromosome rearrangements in patients suspected of VCFS, but who lacked a 22q11 deletion or TBX1 mutation. One individual displayed hemizygous CHD7, which encodes a chromodomain protein. CHD7 haploinsufficiency is the major cause of coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, and ear anomalies/deafness (CHARGE) syndrome, but this patient lacked the major diagnostic features of coloboma and choanal atresia. Because a subset of CHARGE cases also display 22q11 deletions, we explored the embryological relationship between CHARGE and VCSF using mouse models. The hallmark of Tbx1 haploinsufficiency is hypo/aplasia of the fourth pharyngeal arch artery (PAA) at E10.5. Identical malformations were observed in Chd7 heterozygotes, with resulting aortic arch interruption at later stages. Other than Tbx1, Chd7 is the only gene reported to affect fourth PAA development by haploinsufficiency. Moreover, Tbx1+/-;Chd7+/- double heterozygotes demonstrated a synergistic interaction during fourth PAA, thymus, and ear morphogenesis. We could not rescue PAA morphogenesis by restoring neural crest Chd7 expression. Rather, biallelic expression of Chd7 and Tbx1 in the pharyngeal ectoderm was required for normal PAA development.


Asunto(s)
Alelos , Aorta Torácica/embriología , Proteínas de Unión al ADN/metabolismo , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio T Box/metabolismo , Animales , Hibridación Genómica Comparativa , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Dominio T Box/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA