Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 159-187, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32176523

RESUMEN

This review focuses on imaging DNA and single RNA molecules in living cells to define eukaryotic functional organization and dynamic processes. The latest advances in technologies to visualize individual DNA loci and RNAs in real time are discussed. Single-molecule fluorescence microscopy provides the spatial and temporal resolution to reveal mechanisms regulating fundamental cell functions. Novel insights into the regulation of nuclear architecture, transcription, posttranscriptional RNA processing, and RNA localization provided by multicolor fluorescence microscopy are reviewed. A perspective on the future use of live imaging technologies and overcoming their current limitations is provided.


Asunto(s)
Núcleo Celular/ultraestructura , Cromatina/ultraestructura , ADN/ultraestructura , Regulación de la Expresión Génica , ARN Mensajero/ultraestructura , ARN Pequeño no Traducido/ultraestructura , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Humanos , Microscopía Fluorescente , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Imagen Individual de Molécula/instrumentación , Imagen Individual de Molécula/métodos , Coloración y Etiquetado/métodos , Telómero/metabolismo , Telómero/ultraestructura , Transcripción Genética
2.
Nat Rev Mol Cell Biol ; 22(7): 483-504, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33837370

RESUMEN

Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.


Asunto(s)
Biosíntesis de Proteínas , Transporte de ARN , ARN Mensajero/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica , Humanos , Ribonucleoproteínas/metabolismo
3.
Nat Rev Genet ; 25(4): 272-285, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195868

RESUMEN

Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.


Asunto(s)
Redes Reguladoras de Genes , Imagen Individual de Molécula , Transcripción Genética
4.
Cell ; 162(1): 211-20, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140598

RESUMEN

Specific binding proteins are crucial for the correct spatiotemporal expression of mRNA. To understand this process, a method is required to characterize RNA-protein interactions in single living cells with subcellular resolution. We combined endogenous single RNA and protein detection with two-photon fluorescence fluctuation analysis to measure the average number of proteins bound to mRNA at specific locations within live cells. We applied this to quantify the known binding of zipcode binding protein 1 (ZBP1) and ribosomes to ß-actin mRNA within subcellular compartments of primary fibroblasts and neurons. ZBP1-mRNA binding did not occur in nuclei, contrary to previous conclusions. ZBP1 interaction with ß-actin mRNA was enhanced perinuclearly in neurons compared to fibroblasts. Cytoplasmic ZBP1 and ribosome binding to the mRNA were anti-correlated depending on their location in the cell. These measurements support a mechanism whereby ZBP1 inhibits translation of localizing mRNA until its release from the mRNA peripherally, allowing ribosome binding.


Asunto(s)
Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Neuronas/metabolismo , Análisis de la Célula Individual/métodos , Actinas/genética , Actinas/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Fluorescencia , Ratones , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Ribosomas/metabolismo
5.
Mol Cell ; 82(2): 389-403, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34739873

RESUMEN

RNA binding proteins (RBPs) regulate nearly all post-transcriptional processes within cells. To fully understand RBP function, it is essential to identify their in vivo targets. Standard techniques for profiling RBP targets, such as crosslinking immunoprecipitation (CLIP) and its variants, are limited or suboptimal in some situations, e.g. when compatible antibodies are not available and when dealing with small cell populations such as neuronal subtypes and primary stem cells. This review summarizes and compares several genetic approaches recently designed to identify RBP targets in such circumstances. TRIBE (targets of RNA binding proteins identified by editing), RNA tagging, and STAMP (surveying targets by APOBEC-mediated profiling) are new genetic tools useful for the study of post-transcriptional regulation and RBP identification. We describe the underlying RNA base editing technology, recent applications, and therapeutic implications.


Asunto(s)
Técnicas Genéticas , Edición de ARN , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , ARN/genética , Animales , Sitios de Unión , Humanos , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
7.
Nat Rev Mol Cell Biol ; 16(2): 95-109, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25549890

RESUMEN

The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization.


Asunto(s)
Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Animales , Transporte Biológico/fisiología , Humanos , Neuronas/metabolismo , Transporte de Proteínas/fisiología
8.
Cell ; 147(7): 1484-97, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196726

RESUMEN

Messenger RNA decay measurements are typically performed on a population of cells. However, this approach cannot reveal sufficient complexity to provide information on mechanisms that may regulate mRNA degradation, possibly on short timescales. To address this deficiency, we measured cell cycle-regulated decay in single yeast cells using single-molecule FISH. We found that two genes responsible for mitotic progression, SWI5 and CLB2, exhibit a mitosis-dependent mRNA stability switch. Their transcripts are stable until mitosis, when a precipitous decay eliminates the mRNA complement, preventing carryover into the next cycle. Remarkably, the specificity and timing of decay is entirely regulated by their promoter, independent of specific cis mRNA sequences. The mitotic exit network protein Dbf2p binds to SWI5 and CLB2 mRNAs cotranscriptionally and regulates their decay. This work reveals the promoter-dependent control of mRNA stability, a regulatory mechanism that could be employed by a variety of mRNAs and organisms.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Estabilidad del ARN , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Hibridación Fluorescente in Situ , Cinética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Transcripción Genética
9.
Nature ; 583(7816): 431-436, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581360

RESUMEN

Molecular noise is a natural phenomenon that is inherent to all biological systems1,2. How stochastic processes give rise to the robust outcomes that support tissue homeostasis remains unclear. Here we use single-molecule RNA fluorescent in situ hybridization (smFISH) on mouse stem cells derived from haematopoietic tissue to measure the transcription dynamics of three key genes that encode transcription factors: PU.1 (also known as Spi1), Gata1 and Gata2. We find that infrequent, stochastic bursts of transcription result in the co-expression of these antagonistic transcription factors in the majority of haematopoietic stem and progenitor cells. Moreover, by pairing smFISH with time-lapse microscopy and the analysis of pedigrees, we find that although individual stem-cell clones produce descendants that are in transcriptionally related states-akin to a transcriptional priming phenomenon-the underlying transition dynamics between states are best captured by stochastic and reversible models. As such, a stochastic process can produce cellular behaviours that may be incorrectly inferred to have arisen from deterministic dynamics. We propose a model whereby the intrinsic stochasticity of gene expression facilitates, rather than impedes, the concomitant maintenance of transcriptional plasticity and stem cell robustness.


Asunto(s)
Células Madre Adultas/metabolismo , Regulación de la Expresión Génica , Imagen Individual de Molécula , Transcripción Genética/genética , Células Madre Adultas/citología , Animales , Células Cultivadas , Células Clonales/citología , Células Clonales/metabolismo , Femenino , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA2/genética , Redes Reguladoras de Genes , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Linaje , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Procesos Estocásticos , Transactivadores/genética
10.
Mol Cell ; 70(2): 195-196, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677489

RESUMEN

Lim et al. (2018) use live imaging in Drosophila embryos to show that enhancers can drive transcription from promoters on another chromosome when they are in close proximity. In addition, they show that multiple promoters can access the same enhancer without competition, potentially sharing a pool of factors in a transcriptional "hub."


Asunto(s)
Drosophila/genética , Elementos de Facilitación Genéticos , Animales , Cromosomas , Proteínas de Drosophila/genética , Regiones Promotoras Genéticas
12.
Nat Methods ; 19(12): 1558-1562, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357695

RESUMEN

The MS2 and MS2-coat protein (MS2-MCP) imaging system is widely used to study messenger RNA (mRNA) spatial distribution in living cells. Here, we report that the MS2-MCP system destabilizes some tagged mRNAs by activating the nonsense-mediated mRNA decay pathway. We introduce an improved version, which counteracts this effect by increasing the efficiency of translation termination of the tagged mRNAs. Improved versions were developed for both yeast and mammalian systems.


Asunto(s)
Proteínas de la Cápside , Saccharomyces cerevisiae , Animales , Proteínas de la Cápside/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biosíntesis de Proteínas , Regulación de la Expresión Génica , Estabilidad del ARN , Mamíferos/genética
13.
Proc Natl Acad Sci U S A ; 119(38): e2123373119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095210

RESUMEN

The ability of neurons to process and store salient environmental features underlies information processing in the brain. Long-term information storage requires synaptic plasticity and regulation of gene expression. While distinct patterns of activity have been linked to synaptic plasticity, their impact on immediate early gene (IEG) expression remains poorly understood. The activity regulated cytoskeleton associated (Arc) gene has received wide attention as an IEG critical for long-term synaptic plasticity and memory. Yet, to date, the transcriptional dynamics of Arc in response to compartment and input-specific activity is unclear. By developing a knock-in mouse to fluorescently tag Arc alleles, we studied real-time transcription dynamics after stimulation of dentate granule cells (GCs) in acute hippocampal slices. To our surprise, we found that Arc transcription displayed distinct temporal kinetics depending on the activation of excitatory inputs that convey functionally distinct information, i.e., medial and lateral perforant paths (MPP and LPP, respectively). Moreover, the transcriptional dynamics of Arc after synaptic stimulation was similar to direct activation of GCs, although the contribution of ionotropic glutamate receptors, L-type voltage-gated calcium channel, and the endoplasmic reticulum (ER) differed. Specifically, we observed an ER-mediated synapse-to-nucleus signal that supported elevations in nuclear calcium and, thereby, rapid induction of Arc transcription following MPP stimulation. By delving into the complex excitation-transcription coupling for Arc, our findings highlight how different synaptic inputs may encode information by modulating transcription dynamics of an IEG linked to learning and memory.


Asunto(s)
Proteínas del Citoesqueleto , Genes Inmediatos-Precoces , Proteínas del Tejido Nervioso , Plasticidad Neuronal , Transcripción Genética , Animales , Proteínas del Citoesqueleto/genética , Ratones , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Sinapsis/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(37): e2208465119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067310

RESUMEN

Gene expression is tightly regulated by RNA-binding proteins (RBPs) to facilitate cell survival, differentiation, and migration. Previous reports have shown the importance of the Insulin-like Growth Factor II mRNA-Binding Protein (IGF2BP1/IMP1/ZBP1) in regulating RNA fate, including localization, transport, and translation. Here, we generated and characterized a knockout mouse to study RBP regulation. We report that IGF2BP1 is essential for proper brain development and neonatal survival. Specifically, these mice display disorganization in the developing neocortex, and further investigation revealed a loss of cortical marginal cell density at E17.5. We also investigated migratory cell populations in the IGF2BP1[Formula: see text] mice, using BrdU labeling, and detected fewer mitotically active cells in the cortical plate. Since RNA localization is important for cellular migration and directionality, we investigated the regulation of ß-actin messenger RNA (mRNA), a well-characterized target with established roles in cell motility and development. To aid in our understanding of RBP and target mRNA regulation, we generated mice with endogenously labeled ß-actin mRNA (IGF2BP1[Formula: see text]; ß-actin-MS2[Formula: see text]). Using endogenously labeled ß-actin transcripts, we report IGF2BP1[Formula: see text] neurons have increased transcription rates and total ß-actin protein content. In addition, we found decreased transport and anchoring in knockout neurons. Overall, we present an important model for understanding RBP regulation of target mRNA.


Asunto(s)
Actinas , Encéfalo , Proteínas de Unión al ARN , Actinas/genética , Actinas/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Movimiento Celular/genética , Ratones , Ratones Noqueados , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
Annu Rev Genet ; 50: 267-291, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27893965

RESUMEN

Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.


Asunto(s)
Regulación de la Expresión Génica , Análisis de la Célula Individual/métodos , Animales , Cromatina/química , Cromatina/genética , Citoplasma/genética , Perfilación de la Expresión Génica/métodos , Humanos , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
16.
Cell ; 134(5): 722-3, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18775304

RESUMEN

Two new studies reveal the role of microtubule polarity in the asymmetric localization of mRNAs. In this issue of Cell, Zimyanin et al. (2008) show that the asymmetric localization of oskar mRNA in fruit fly oocytes results from a slight bias in the direction of its transport. Meanwhile, Messitt et al. (2008) reporting in Developmental Cell find a subpopulation of microtubules that is critical for the asymmetric distribution of Vg1 mRNA in frog oocytes.


Asunto(s)
Microtúbulos/metabolismo , Oocitos/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Animales , Drosophila/embriología , Proteínas de Drosophila/genética , Humanos , Oocitos/química , ARN Mensajero/análisis , Factor de Crecimiento Transformador beta/genética , Xenopus/embriología , Proteínas de Xenopus/genética
17.
Genes Dev ; 29(8): 876-86, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25877922

RESUMEN

Repetitive nucleotide or amino acid sequences are often engineered into probes and biosensors to achieve functional readouts and robust signal amplification. However, these repeated sequences are notoriously prone to aberrant deletion and degradation, impacting the ability to correctly detect and interpret biological functions. Here, we introduce a facile and generalizable approach to solve this often unappreciated problem by modifying the nucleotide sequences of the target mRNA to make them nonrepetitive but still functional ("synonymous"). We first demonstrated the procedure by designing a cassette of synonymous MS2 RNA motifs and tandem coat proteins for RNA imaging and showed a dramatic improvement in signal and reproducibility in single-RNA detection in live cells. The same approach was extended to enhancing the stability of engineered fluorescent biosensors containing a fluorescent resonance energy transfer (FRET) pair of fluorescent proteins on which a great majority of systems thus far in the field are based. Using the synonymous modification to FRET biosensors, we achieved correct expression of full-length sensors, eliminating the aberrant truncation products that often were assumed to be due to nonspecific proteolytic cleavages. Importantly, the biological interpretations of the sensor are significantly different when a correct, full-length biosensor is expressed. Thus, we show here a useful and generally applicable method to maintain the integrity of expressed genes, critical for the correct interpretation of probe readouts.


Asunto(s)
Expresión Génica , Técnicas Genéticas , Secuencias Repetitivas de Ácidos Nucleicos/genética , Animales , Secuencia de Bases/genética , Proteínas de la Cápside/genética , Línea Celular , Células Cultivadas , Codón/genética , Humanos , Levivirus/genética , Ratones , Motivos de Nucleótidos , Saccharomyces cerevisiae/genética
18.
Biophys J ; 121(9): 1738-1752, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35364106

RESUMEN

Chromatin remodelers actively target arrays of acetylated nucleosomes at select enhancers and promoters to facilitate or shut down the repeated recruitment of RNA polymerase II during transcriptional bursting. It is poorly understood how chromatin remodelers such as PBAF dynamically target different chromatin states inside a live cell. Our live-cell single-molecule fluorescence microscopy study reveals chromatin hubs throughout the nucleus where PBAF rapidly cycles on and off the genome. Deletion of PBAF's bromodomains impairs targeting and stable engagement of chromatin in hubs. Dual color imaging reveals that PBAF targets both euchromatic and heterochromatic hubs with distinct genome-binding kinetic profiles that mimic chromatin stability. Removal of PBAF's bromodomains stabilizes H3.3 binding within chromatin, indicating that bromodomains may play a direct role in remodeling of the nucleosome. Our data suggests that PBAF's dynamic bromodomain-mediated engagement of a nucleosome may reflect the chromatin-remodeling potential of differentially bound chromatin states.


Asunto(s)
Cromatina , Nucleosomas , Acetilación , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo
19.
Nat Methods ; 15(1): 81-89, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29131164

RESUMEN

The MS2-MCP system enables researchers to image multiple steps of the mRNA life cycle with high temporal and spatial resolution. However, for short-lived mRNAs, the tight binding of the MS2 coat protein (MCP) to the MS2 binding sites (MBS) protects the RNA from being efficiently degraded, and this confounds the study of mRNA regulation. Here, we describe a reporter system (MBSV6) with reduced affinity for the MCP, which allows mRNA degradation while preserving single-molecule detection determined by single-molecule FISH (smFISH) or live imaging. Constitutive mRNAs (MDN1 and DOA1) and highly-regulated mRNAs (GAL1 and ASH1) endogenously tagged with MBSV6 in Saccharomyces cerevisiae degrade normally. As a result, short-lived mRNAs were imaged throughout their complete life cycle. The MBSV6 reporter revealed that, in contrast to previous findings, coordinated recruitment of mRNAs at specialized structures such as P-bodies during stress did not occur, and mRNA degradation was heterogeneously distributed in the cytoplasm.


Asunto(s)
Proteínas de la Cápside/metabolismo , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas de la Cápside/genética , Citoplasma/metabolismo , Humanos , Hibridación Fluorescente in Situ , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análisis de la Célula Individual , Células Tumorales Cultivadas
20.
Genes Dev ; 27(5): 541-51, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23431032

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism responsible for "surveying" mRNAs during translation and degrading those that harbor a premature termination codon (PTC). Currently the intracellular spatial location of NMD and the kinetics of its decay step in mammalian cells are under debate. To address these issues, we used single-RNA fluorescent in situ hybridization (FISH) and measured the NMD of PTC-containing ß-globin mRNA in intact single cells after the induction of ß-globin gene transcription. This approach preserves temporal and spatial information of the NMD process, both of which would be lost in an ensemble study. We determined that decay of the majority of PTC-containing ß-globin mRNA occurs soon after its export into the cytoplasm, with a half-life of <1 min; the remainder is degraded with a half-life of >12 h, similar to the half-life of normal PTC-free ß-globin mRNA, indicating that it had evaded NMD. Importantly, NMD does not occur within the nucleoplasm, thus countering the long-debated idea of nuclear degradation of PTC-containing transcripts. We provide a spatial and temporal model for the biphasic decay of NMD targets.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Hibridación Fluorescente in Situ , Factores de Tiempo , Globinas beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA