Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 595(7868): 521-525, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34290425

RESUMEN

Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.

2.
Nature ; 578(7796): 545-549, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32103195

RESUMEN

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels1,2. Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology2. In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes1. Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order3-6, electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest3-15, no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials4,16.

3.
Nat Mater ; 22(5): 583-590, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894774

RESUMEN

Using circularly polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of chirality and magnetization, with important implications in asymmetric synthesis in chemistry; homochirality in biomolecules; and ferromagnetic spintronics. We report the surprising observation of helicity-dependent optical control of fully compensated antiferromagnetic order in two-dimensional even-layered MnBi2Te4, a topological axion insulator with neither chirality nor magnetization. To understand this control, we study an antiferromagnetic circular dichroism, which appears only in reflection but is absent in transmission. We show that the optical control and circular dichroism both arise from the optical axion electrodynamics. Our axion induction provides the possibility to optically control a family of [Formula: see text]-symmetric antiferromagnets ([Formula: see text], inversion; [Formula: see text], time-reversal) such as Cr2O3, even-layered CrI3 and possibly the pseudo-gap state in cuprates. In MnBi2Te4, this further opens the door for optical writing of a dissipationless circuit formed by topological edge states.

4.
Phys Rev Lett ; 128(16): 166401, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35522498

RESUMEN

We study the properties of the Dirac states in SiC-graphene and its hole-doped compositions employing angle-resolved photoemission spectroscopy and density functional theory. The symmetry-selective measurements for the Dirac bands reveal their linearly dispersive behavior across the Dirac point which was termed as the anomalous region in earlier studies. No gap is observed even after boron substitution that reduced the carrier concentration significantly from 3.7×10^{13} cm^{-2} in SiC-graphene to 0.8×10^{13} cm^{-2} (5% doping). The anomalies at the Dirac point are attributed to the spectral width arising from the lifetime and momentum broadening in the experiments. The substitution of boron at the graphitic sites leads to a band renormalization and a shift of the Dirac point towards the Fermi level. The internal symmetries appear to be preserved in SiC-graphene even after significant boron substitutions. These results suggest that SiC-graphene is a good platform to realize exotic science as well as advanced technology where the carrier properties like concentration, mobility, etc., can be tuned keeping the Dirac fermionic properties protected.

5.
Nat Mater ; 17(11): 978-985, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30275564

RESUMEN

Chiral crystals are materials with a lattice structure that has a well-defined handedness due to the lack of inversion, mirror or other roto-inversion symmetries. Although it has been shown that the presence of crystalline symmetries can protect topological band crossings, the topological electronic properties of chiral crystals remain largely uncharacterized. Here we show that Kramers-Weyl fermions are a universal topological electronic property of all non-magnetic chiral crystals with spin-orbit coupling and are guaranteed by structural chirality, lattice translation and time-reversal symmetry. Unlike conventional Weyl fermions, they appear at time-reversal-invariant momenta. We identify representative chiral materials in 33 of the 65 chiral space groups in which Kramers-Weyl fermions are relevant to the low-energy physics. We determine that all point-like nodal degeneracies in non-magnetic chiral crystals with relevant spin-orbit coupling carry non-trivial Chern numbers. Kramers-Weyl materials can exhibit a monopole-like electron spin texture and topologically non-trivial bulk Fermi surfaces over an unusually large energy window.

6.
An Acad Bras Cienc ; 91(1): e20170910, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30785497

RESUMEN

Bone accumulation by porcupines at archaeological sites is well known. However, in paleontological sites such a taphonomical occurrence is rather rare. We here report porcupine (Hystrix sp.) gnaw marks on an unidentified bone fragment, dated to ~2.6 Ma from the Upper Siwalik deposits exposed near Khetpurali (Haryana), India. The present gnaw marks are very distinct and are characterized by visible edges and grooves making clear broad and shallow furrows. The present find adds to our knowledge of Siwalik vertebrate taphonomy where most of the accumulations reported earlier were either fluvial or made by carnivores.


Asunto(s)
Fósiles , Puercoespines/anatomía & histología , Determinación de la Edad por el Esqueleto , Animales , India , Paleontología , Diente/anatomía & histología
7.
Phys Rev Lett ; 121(22): 226602, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30547625

RESUMEN

Recent experiments suggest that excitonic degrees of freedom play an important role in precipitating the charge density wave (CDW) transition in 1T-TiSe_{2}. Through systematic calculations of the electronic and phonon spectrum based on density functional perturbation theory, we show that the predicted critical doping of the CDW phase overshoots the experimental value by 1 order of magnitude. In contrast, an independent self-consistent many-body calculation of the excitonic order parameter and renormalized band structure is able to capture the experimental phase diagram in extremely good qualitative and quantitative agreement. This demonstrates that electron-electron interactions and the excitonic instability arising from direct electron-hole coupling are pivotal to accurately describe the nature of the CDW in this system. This has important implications to understand the emergence of superconductivity within the CDW phase of this and related systems.

8.
Phys Rev Lett ; 121(22): 226401, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30547639

RESUMEN

Materials with tunable charge and lattice degrees of freedom provide excellent platforms for investigating multiple phases that can be controlled via external stimuli. We show how the charge-ordered ferroelectric oxide Ag_{2}BiO_{3}, which has been realized experimentally, presents a unique exemplar of a metal-insulator transition under an external electric field. Our first-principles calculations, combined with a symmetry analysis, reveal the presence of a nearly ideal hourglass-Dirac-semimetal state in the nonpolar structure of Ag_{2}BiO_{3}. The low-energy band structure consists of two hourglasslike nodal lines located on two mutually orthogonal glide-mirror planes in the absence of spin-orbit coupling (SOC) effects. These lines cross at a common point and form an interlinked chainlike structure, which extends beyond the first Brillouin zone. Inclusion of the SOC opens a small gap in the nodal lines and results in two symmetry-enforced hourglasslike Dirac points on the C[over ˜]_{2y} screw rotation axis. Our results indicate that Ag_{2}BiO_{3} will provide an ideal platform for exploring the ferroelectric-semiconductor to Dirac-semimetal transition by the application of an external electric field.

9.
Phys Chem Chem Phys ; 20(23): 15939-15950, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29850682

RESUMEN

The catalytic performance of Ni can be modified by alloying with a suitable amount (25% of total metal loading) of another low-cost metal such as Fe, Co or Cu. These alumina supported Ni and Ni based alloy catalysts are gaining attention for certain important reactions due to their promising activity, stability, selectivity and low-cost. The reduced form of the supported Ni-M (M = Fe, Co or Cu) catalysts formed different Ni-M alloys. To understand the reactivity trends for CO2 methanation and CO2 reforming of CH4 (DRM), we analyzed the correlations between turnover frequencies and the d-density of states (d-DOS) based electronic properties of surface Ni in Ni and Ni-M model catalysts. The composition and components of the most active catalysts for each reaction were different. The dissimilar trend in activity of the Ni and Ni-M alloy catalysts resulted in different descriptors for the two reactions. The Ni-Fe alloy catalyst (with a Ni to Fe ratio of 3 : 1) was the most active in CO2 methanation due to the minimum number of Ni d-density of states at the EF. In contrast, the Ni-Co alloy catalyst (with a Ni to Co ratio of 3 : 1) was the most active in the CO2 reforming of CH4 due to the lowest d-band center (with respect to Ni d-density of states), and the Ni-Cu alloy catalyst (with a Ni to Cu ratio of 3 : 1) was the least active for both reactions. Moreover, step sites were better correlated for CO2 methanation, whereas terrace sites were better correlated for the CO2 reforming of CH4.

10.
Nano Lett ; 17(12): 7213-7217, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29110492

RESUMEN

3D Dirac semimetals are an emerging class of materials that possess topological electronic states with a Dirac dispersion in their bulk. In nodal-line Dirac semimetals, the conductance and valence bands connect along a closed path in momentum space, leading to the prediction of pseudospin vortex rings and pseudospin skyrmions. Here, we use Fourier transform scanning tunneling spectroscopy (FT-STS) at 4.5 K to resolve quasiparticle interference (QPI) patterns at single defect centers on the surface of the line nodal semimetal zirconium silicon sulfide (ZrSiS). Our QPI measurements show pseudospin conservation at energies close to the line node. In addition, we determine the Fermi velocity to be ℏvF = 2.65 ± 0.10 eV Å in the Γ-M direction ∼300 meV above the Fermi energy EF and the line node to be ∼140 meV above EF. More importantly, we find that certain scatterers can introduce energy-dependent nonpreservation of pseudospin, giving rise to effective scattering between states with opposite pseudospin deep inside valence and conduction bands. Further investigations of quasiparticle interference at the atomic level will aid defect engineering at the synthesis level, needed for the development of lower-power electronics via dissipationless electronic transport in the future.

11.
Phys Rev Lett ; 119(15): 156401, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29077460

RESUMEN

Topological semimetals can be classified by the connectivity and dimensionality of the band crossings in momentum space. The band crossings of a Dirac, Weyl, or an unconventional fermion semimetal are zero-dimensional (0D) points, whereas the band crossings of a nodal-line semimetal are one-dimensional (1D) closed loops. Here we propose that the presence of perpendicular crystalline mirror planes can protect three-dimensional (3D) band crossings characterized by nontrivial links such as a Hopf link or a coupled chain, giving rise to a variety of new types of topological semimetals. We show that the nontrivial winding number protects topological surface states distinct from those in previously known topological semimetals with a vanishing spin-orbit interaction. We also show that these nontrivial links can be engineered by tuning the mirror eigenvalues associated with the perpendicular mirror planes. Using first-principles band structure calculations, we predict the ferromagnetic full Heusler compound Co_{2}MnGa as a candidate. Both Hopf link and chainlike bulk band crossings and unconventional topological surface states are identified.

12.
Sci Eng Ethics ; 22(2): 597-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26154417

RESUMEN

Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.


Asunto(s)
Discusiones Bioéticas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/ética , Genoma , Humanos
13.
Adv Mater ; 35(27): e2201058, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36414399

RESUMEN

Interest in topological materials continues to grow unabated in view of their conceptual novelties as well as their potential as platforms for transformational new technologies. Electronic states in a topological material are robust against perturbations and support unconventional electromagnetic responses. The first-principles band-theory paradigm has been a key player in the field by providing successful prediction of many new classes of topological materials. This perspective presents a cross section through the recent work on understanding the role of geometry and topology in generating topological states and their responses to external stimuli, and as a basis for connecting theory and experiment within the band theory framework. In this work, effective strategies for topological materials discovery and impactful directions for future topological materials research are also commented.

14.
J Phys Condens Matter ; 35(23)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36917860

RESUMEN

Reduced dielectric screening in two-dimensional materials enables bound excitons, which modifies their optical absorption and optoelectronic response. Here, we demonstrate the existence of excitons in the bandgap of the monolayer family of the newly discovered syntheticMoSi2Z4(Z=N, P, and As) series of materials. All three monolayers support several bright and strongly bound excitons with binding energies varying from 1 eV to 1.35 eV for the lowest energy exciton resonances. We show that on increasing the pump fluence or photo-excited carrier density, the lowest energy exciton first undergoes a redshift followed by a blueshift, due to the renormalized exciton binding energies. The exciton binding energy varies as a Lennard-Jones-like potential as a function of the inter-exciton spacing. This establishes an atom-like attractive and repulsive interaction between excitons depending on the inter-exciton separation. Our study shows that theMoSi2Z4series of monolayers offer an exciting test-bed for exploring the physics of strongly bound excitons and their non-equilibrium dynamics.

15.
J Phys Condens Matter ; 36(7)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37857273

RESUMEN

The family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently,TaAs2, a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the (2‾01) surface, along with the presence of extreme MR observed from magneto-transport measurements. A comparison of the ARPES results with first-principles computations shows that the linearly dispersive bands on the measured surface ofTaAs2are trivial bulk bands. The absence of symmetry-protected surface state on the (2‾01) surface indicates its topologically dark nature. The presence of open FS features suggests that the open-orbit fermiology could contribute to the extremely large MR ofTaAs2.

16.
Science ; 381(6654): 181-186, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37319246

RESUMEN

Quantum geometry in condensed-matter physics has two components: the real part quantum metric and the imaginary part Berry curvature. Whereas the effects of Berry curvature have been observed through phenomena such as the quantum Hall effect in two-dimensional electron gases and the anomalous Hall effect (AHE) in ferromagnets, the quantum metric has rarely been explored. Here, we report a nonlinear Hall effect induced by the quantum metric dipole by interfacing even-layered MnBi2Te4 with black phosphorus. The quantum metric nonlinear Hall effect switches direction upon reversing the antiferromagnetic (AFM) spins and exhibits distinct scaling that is independent of the scattering time. Our results open the door to discovering quantum metric responses predicted theoretically and pave the way for applications that bridge nonlinear electronics with AFM spintronics.

17.
J Phys Condens Matter ; 34(19)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35176733

RESUMEN

We report superconducting state properties and electronic structure of a full Heusler material ScAu2Al. The resistivity measurement indicates a zero-field (at nominal Earth's field) superconducting transition temperature,Tc= 5.12 K (in contrary to the previously reported value of 4.4 K), which falls in the highestTc-regime among the Heusler superconductors. The magnetization data shows that ScAu2Al is a moderate type-II superconductor, where the critical field values can be estimated from the Ginzburg-Landau-Abrikosov-Gorkov theory. The field-dependent magnetization response further shows signatures of flux jump in ScAu2Al. A sharp jump in the temperature dependent specific heat (Cp) data confirms bulk superconductivity. We report that the electron-phonon coupling constant,λe-ph= 0.77, suggesting a moderate electron-phonon coupling in ScAu2Al. Further, we show that the observedλe-phvalue in ScAu2Al is the highest amongst the reported Heusler superconductors, indicating strong correlation betweenTcandλe-phvalues and significant role of electron-phonon coupling in mediating superconductivity in Heusler superconductors. Finally, we discuss the electronic properties and reveal the existence of van Hove singularity near the Fermi level in ScAu2Al.

18.
ACS Appl Mater Interfaces ; 14(31): 35927-35939, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867860

RESUMEN

Two-dimensional (2D)-based PN-heterojunction revealed a promising future of atomically thin optoelectronics with diverse functionalities in different environments. Herein, we reported a p-GaSe/n-HfS2 van der Waals (vdW) heterostructure for high-performance photodetectors and investigated the laser irradiation effect on the fabricated device. The fabricated 2D vdW heterostructure revealed a high photoresponsivity of 1 × 104 A W-1 with a photocurrent value of 377 nA due to unique type-II band alignment and enhanced surface potential under light illumination, which is further confirmed by density functional theory (DFT) calculations. Before laser irradiation, the device showed high field-effect mobility (µEF) of 26.37 cm2 V-1 s-1, ON/OFF ratio of ∼105, and threshold voltage swing (SS) of ∼463 mV dec-1. With the exposure of 690 mW cm-2 laser power density, µEF reached 204 cm2 V-1 s-1, although ∼2 V ΔVth shifts are observed along with the SS decreased to 175 mV dec-1. Interestingly, the reduced SS shows better channel control of the fabricated device with laser power. Similarly, the ON/OFF ratio decreased to ∼1.29 × 103. The results indicate that the creation of oxide trap charges at the interface of SiO2 and PN-heterojunction layers was observed with voltage biasing and high laser power density. The degradation of electrical parameters is attributed to fewer interface trap charges per surface area of the device rather than direct damage in PN-heterojunction layers. Considering the excellent 2D electronic properties, these materials are better candidates for future high-radiation environments.

19.
J Phys Condens Matter ; 34(12)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34920441

RESUMEN

Extension of the topological concepts to the bosonic systems has led to the prediction of topological phonons in materials. Here we discuss the topological phonons and electronic structure of Li2BaX (X = Si, Ge, Sn, and Pb) materials using first-principles theoretical modelling. A careful analysis of the phonon spectrum of Li2BaX reveals an optical mode inversion with the formation of nodal line states in the Brillouin zone. Our electronic structure results reveal a double band inversion at the Γ point with the formation of inner nodal-chain states in the absence of spin-orbit coupling (SOC). Inclusion of the SOC opens a materials-dependent gap at the band crossing points and transitions the system into a trivial insulator state. We also discuss the lattice thermal conductivity and transport properties of Li2BaX materials. Our results show that coexisting phonon and electron nontrivial topology with robust transport properties would make Li2BaX materials appealing for device applications.

20.
IUCrJ ; 9(Pt 3): 378-385, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35546799

RESUMEN

EuAl4 possesses the BaAl4 crystal structure type with tetragonal symmetry I4/mmm. It undergoes a charge density wave (CDW) transition at T CDW = 145 K and features four consecutive antiferromagnetic phase transitions below 16 K. Here we use single-crystal X-ray diffraction to determine the incommensurately modulated crystal structure of EuAl4 in its CDW state. The CDW is shown to be incommensurate with modulation wave vector q = (0,0,0.1781 (3)) at 70 K. The symmetry of the incommensurately modulated crystal structure is orthorhombic with superspace group Fmmm(00σ)s00, where Fmmm is a subgroup of I4/mmm of index 2. Both the lattice and the atomic coordinates of the basic structure remain tetragonal. Symmetry breaking is entirely due to the modulation wave, where atoms Eu and Al1 have displacements exclusively along a, while the fourfold rotation would require equal displacement amplitudes along a and b. The calculated band structure of the basic structure and interatomic distances in the modulated crystal structure both indicate the Al atoms as the location of the CDW. The tem-per-ature dependence of the specific heat reveals an anomaly at T CDW = 145 K of a magnitude similar to canonical CDW systems. The present discovery of orthorhombic symmetry for the CDW state of EuAl4 leads to the suggestion of monoclinic instead of orthorhombic symmetry for the third AFM state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA