Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209161

RESUMEN

Recently, deep eutectic solvent (DES) or ionic liquid (IL) analogues have been considered as the newest green solvent, demonstrating the potential to replace harsh volatile organic solvents. DESs are mainly a combination of two compounds: hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), which have the ability to interact through extensive hydrogen bonds. A thorough understanding of their physicochemical properties is essential, given their successful applications on an industrial scale. The appropriate blend of HBA to HBD can easily fine-tune DES properties for desired applications. In this context, we have reviewed the basic information related to DESs, the two most studied physicochemical properties (density and viscosity), and their performance as a solvent in (i) drug delivery and (ii) extraction of biomolecules. A broader approach of various factors affecting their performance has been considered, giving a detailed picture of the current status of DESs in research and development.

2.
Langmuir ; 33(24): 6182-6191, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28551998

RESUMEN

The motion of droplets on typical surfaces is generally halted by contact line pinning associated with contact angle hysteresis. In this study, it was shown that, on a zwitterionic sulfobetaine silane (SBSi)-coated surface, aqueous drops with appropriate solutes can demonstrate hysteresis-free behavior, whereas a pure water drop shows spontaneous spreading. By adding solutes such as polyethylene glycol, 2(2-butoxy ethoxy) ethanol, or sodium n-dodecyl sulfate, an aqueous drop with a small contact angle (disappearance of spontaneous spreading) was formed on SBSi surfaces. The initial drop shape was readily relaxed back to a circular shape (hysteresis-free behavior), even upon severe disturbances. Moreover, it was interesting to observe the self-propulsion of such a drop on horizontal SBSi surfaces in the absence of externally provided stimuli. The self-propelled drop tends to follow a random trajectory, and the continuous movement can last for at least 10 min. This self-propelled random motion can be attributed to the combined effects of the hysteresis-free surface and the Marangoni stress. The former comes from the total wetting property of the surface, while the latter originates from surface tension gradient due to fluctuating evaporation rates along the drop border.

3.
Langmuir ; 33(30): 7569-7574, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28709378

RESUMEN

Solute separation of aqueous mixtures is mainly dominated by water vaporization. The evaporation rate of an aqueous drop grows with increasing the liquid-gas interfacial area. The spontaneous spreading behavior of a water droplet on a total wetting surface provides huge liquid-gas interfacial area per unit volume; however, it is halted by the self-pinning phenomenon upon addition of nonvolatile solutes. In this work, it is shown that the solute-induced self-pinning can be overcome by gravity, leading to anisotropic spreading much faster than isotropic spreading. The evaporation rate of anisotropic spreading on a zwitterionic sulfobetaine surface is 25 times larger as that on a poly(methyl methacrylate) surface. Dramatic enhancement of evaporation is demonstrated by simultaneous formation of fog atop liquid film. During anisotropic spreading, the solutes are quickly precipitated out within 30 s, showing the rapid solute-water separation. After repeated spreading process for the dye-containing solution, the mean concentration of the collection is doubled, revealing the concentration efficiency as high as 100%. Gravity-enhanced spreading on total wetting surfaces at room temperature is easy to scale-up with less energy consumption, and thus it has great potentials for the applications of solute separation and concentration.

4.
Food Chem ; 446: 138864, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432132

RESUMEN

The hydration and taste behaviour of glucose and fructose in aqueous ethanolammonium acetate solutions were investigated by measuring volumetric properties. Density and speed of sound were measured at four different temperatures. Apparent and partial molar volumes, apparent specific compressibility, apparent specific volume, transfer volumes, and hydration numbers were determined from the measured density and speed of sound data. Positive transfer properties of saccharides from water to aqueous ethanolammonium acetate solutions suggested the dominance of hydrophilic-ionic interactions. However, such interactions weakened with incremental concentrations of ethanolammonium acetate. The transfer properties increased in the order: glucose > fructose, indicating stronger interactions between glucose and ethanolammonium acetate. The apparent specific volume and apparent specific isentropic compressibility values for monosaccharides in water and in aqueous ethanolammonium acetate were found to fall within the sweet taste modality.


Asunto(s)
Fructosa , Glucosa , Gusto , Soluciones , Agua , Acetatos
5.
Int J Pharm ; 582: 119314, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32283197

RESUMEN

Nanotheranostics is fast-growing pharmaceutical technology for simultaneously monitoring drug release and its distribution, and to evaluate the real time therapeutic efficacy through a single nanoscale for treatment and diagnosis of deadly disease such as cancers. In recent two decades, biodegradable polymers have been discovered as important carriers to accommodate therapeutic and medical imaging agents to facilitate construction of multi-modal formulations. In this review, we summarize various multifunctional polymeric nano-sized formulations such as polymer-based super paramagnetic nanoparticles, ultrasound-triggered polymeric nanoparticles, polymeric nanoparticles bearing radionuclides, and fluorescent polymeric nano-sized formulations for purpose of theranostics. The use of such multi-modal nano-sized formulations for near future clinical trials can assist clinicians to predict therapeutic properties (for instance, depending upon the quantity of drug accumulated at the cancerous site) and observed the progress of tumor growth in patients, thus improving tailored medicines.


Asunto(s)
Antineoplásicos/administración & dosificación , Medios de Contraste/administración & dosificación , Portadores de Fármacos , Nanopartículas , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Polímeros/química , Radiofármacos/administración & dosificación , Nanomedicina Teranóstica , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Medios de Contraste/química , Composición de Medicamentos , Humanos , Neoplasias/metabolismo , Valor Predictivo de las Pruebas , Pronóstico , Radiofármacos/química
6.
PLoS One ; 10(5): e0126091, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26009887

RESUMEN

In this work, we report the thermodynamic and ultrasonic properties of ascorbic acid (vitamin C) in water and in presence of newly synthesized ammonium based protic ionic liquid (diethylethanolammonium propionate) as a function of concentration and temperature. Apparent molar volume and apparent molar isentropic compression, which characterize the solvation state of ascorbic acid (AA) in presence of protic ionic liquid (PIL) has been determined from precise density and speed of sound measurements at temperatures (293.15 to 328.15) K with 5 K interval. The strength of molecular interactions prevailing in ternary solutions has been discussed on the basis of infinite dilution partial molar volume and partial molar isentropic compression, corresponding volume of transfer and interaction coefficients. Result has been discussed in terms of solute-solute and solute-solvent interactions occurring between ascorbic acid and PIL in ternary solutions (AA + water + PIL).


Asunto(s)
Ácido Ascórbico/química , Compuestos de Amonio , Líquidos Iónicos , Soluciones , Termodinámica , Ultrasonido , Agua
7.
Food Chem ; 169: 478-83, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25236254

RESUMEN

The volumetric properties and taste behaviour of sucrose in aqueous solutions of a protic ionic liquid (3-hydroxypropylammonium acetate) have been studied at temperatures, T=(293.15-318.15)K and at atmospheric pressure. Apparent molar volumes, V2,ϕ, apparent specific volumes, ASV, apparent molar isentropic compressibilities, Ks,2,ϕ, and apparent specific isentropic compressibilities, ASIC, were calculated from measured density, ρ and speed of sound, u data. Partial molar volumes, V2(°), and partial molar isentropic compressibilities, Ks,2(°) at infinite dilution, transfer parameters (ΔtV2(°) and ΔtKs,2(°)), expansion coefficients, [(∂V2(°)/∂T)P and (∂(2)V2(°)/∂T(2))P], interaction coefficients, (YAB and YABB) and hydration numbers, Nw, were also evaluated and discussed in terms of solute-cosolute interactions. Further, the effect of protic ionic liquid on the taste behaviour of sucrose has been discussed from ASV and ASIC parameters, as these parameters, which are sensitive to solvation behaviour of solute, are divided into four basic taste qualities occupying certain ranges.


Asunto(s)
Análisis de los Alimentos/métodos , Líquidos Iónicos/química , Sacarosa/química , Gusto , Agua/química , Acetatos/química , Disacáridos/química , Iones , Presión , Soluciones , Temperatura
8.
Food Chem ; 168: 142-50, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172693

RESUMEN

Thermodynamic and transport properties are very useful in providing valuable information regarding the hydration characteristics of saccharides and play a pivotal role in the study of taste behaviour of saccharides in mixed aqueous solutions. The effects of sodium gluconate and other sodium salts on the hydration behaviour and the basic taste quality of saccharides have been studied from measured apparent molar volumes (V2,ϕ), partial molar volumes (V2(°)) at infinite-dilution, and viscosity B-coefficients, of eight monosaccharides, six disaccharides and two trisaccharides in (0.25, 0.50, 1.00 and 1.50)molkg(-1) aqueous sodium gluconate solutions over a temperature range of (288.15-318.15)K and at atmospheric pressure. Partial molar volumes of transfer (ΔtV2(°)) and viscosity B-coefficients of transfer (ΔtB) of saccharides and other parameters such as isobaric expansion coefficients, interaction coefficients (using McMillan-Mayer theory), and dB/dT parameters have also been determined and discussed in terms of solute (saccharide)-cosolute (sodium gluconate) interactions.


Asunto(s)
Carbohidratos/química , Gluconatos/química , Disacáridos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Monosacáridos/química , Reología , Soluciones/química , Gusto , Termodinámica , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA