Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Struct Biol ; 216(1): 108066, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38350555

RESUMEN

Coccolithophores are marine phytoplankton that produce calcite mineral scales called coccoliths. Many stages in the synthesis of these structures are still unresolved, making it difficult to accurately quantify the energetic costs involved in calcification, required to determine the response coccolith mineralization will have to rising ocean acidification and temperature created by an increase in global CO2 concentrations. To clarify this, an improved understanding of how coccolithophores control the fundamental processes of crystallization, including nucleation, growth, and morphology, is needed. Here, we study how crystal growth and morphology is controlled in the coccolithophore Gephyrocapsa oceanica by imaging coccoliths at various stages of maturity using cryo-transmission electron microscopy (cryoTEM), scanning electron microscopy (SEM) and focused ion beam SEM (FIB-SEM). We reveal that coccolith units tightly interlock with each other due to the non-vertical alignment of the two-layered tube element, causing these mineral units to extend over the adjacent crystals. In specific directions, the growth of the coccolith tube seems to be impacted by the physical constraint created by the close association of neighbouring units around the ring, influencing the overall morphology and organization of the crystals that develop. Our findings contribute to the overall understanding of how biological systems can manipulate crystallization to produce functional mineralized tissues.


Asunto(s)
Haptophyta , Agua de Mar , Cristalización , Concentración de Iones de Hidrógeno , Agua de Mar/química , Carbonato de Calcio/química
2.
Mol Cell ; 63(3): 371-84, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27397686

RESUMEN

DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α. We visualize recruitment by EM analysis of a reconstituted Chl1-Ctf4-GINS assembly. The Chl1 helicase facilitates replication fork progression under conditions of nucleotide depletion, partly independently of Ctf4 interaction. Conversely, Ctf4 interaction, but not helicase activity, is required for Chl1's role in sister chromatid cohesion. A physical interaction between Chl1 and the cohesin complex during S phase suggests that Chl1 contacts cohesin to facilitate its acetylation. Our results reveal how Ctf4 forms a replisomal interaction hub that coordinates replication fork progression and sister chromatid cohesion establishment.


Asunto(s)
Cromátides/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/enzimología , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetiltransferasas/metabolismo , Acilación , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/ultraestructura , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Complejos Multiproteicos , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Relación Estructura-Actividad , Factores de Tiempo , Cohesinas
3.
EMBO J ; 37(2): 269-281, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29212814

RESUMEN

Eukaryotic chromosomes contain a specialised region known as the centromere, which forms the platform for kinetochore assembly and microtubule attachment. The centromere is distinguished by the presence of nucleosomes containing the histone H3 variant, CENP-A. In budding yeast, centromere establishment begins with the recognition of a specific DNA sequence by the CBF3 complex. This in turn facilitates CENP-ACse4 nucleosome deposition and kinetochore assembly. Here, we describe a 3.6 Å single-particle cryo-EM reconstruction of the core CBF3 complex, incorporating the sequence-specific DNA-binding protein Cep3 together with regulatory subunits Ctf13 and Skp1. This provides the first structural data on Ctf13, defining it as an F-box protein of the leucine-rich-repeat family, and demonstrates how a novel F-box-mediated interaction between Ctf13 and Skp1 is responsible for initial assembly of the CBF3 complex.


Asunto(s)
Cinetocoros/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteína A Centromérica/química , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Cinetocoros/metabolismo , Estructura Cuaternaria de Proteína , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO Rep ; 18(4): 558-568, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28188145

RESUMEN

Replication factor C complexes load and unload processivity clamps from DNA and are involved in multiple DNA replication and repair pathways. The RFCCtf18 variant complex is required for activation of the intra-S-phase checkpoint at stalled replication forks and aids the establishment of sister chromatid cohesion. Unlike other RFC complexes, RFCCtf18 contains two non-Rfc subunits, Dcc1 and Ctf8. Here, we present the crystal structure of the Dcc1-Ctf8 heterodimer bound to the C-terminus of Ctf18. We find that the C-terminus of Dcc1 contains three-winged helix domains, which bind to both ssDNA and dsDNA We further show that these domains are required for full recruitment of the complex to chromatin, and correct activation of the replication checkpoint. These findings provide the first structural data on a eukaryotic seven-subunit clamp loader and define a new biochemical activity for Dcc1.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/química , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
5.
J Cell Sci ; 129(24): 4592-4606, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27872152

RESUMEN

Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission yeast Dis1, a member of the XMAP215/TOG family, and Mal3, an EB1 protein. Using an in vitro microscopy assay, we find that purified Dis1 autonomously tracks growing microtubule ends and is a bona fide microtubule polymerase. Mal3 recruits additional Dis1 to microtubule ends, explaining the synergistic enhancement of microtubule dynamicity by these proteins. A non-canonical binding motif in Dis1 mediates the interaction with Mal3. X-ray crystallography shows that this new motif interacts in an unconventional configuration with the conserved hydrophobic cavity formed within the Mal3 C-terminal region that typically interacts with the canonical SXIP motif. Selectively perturbing the Mal3-Dis1 interaction in living cells demonstrates that it is important for accurate chromosome segregation. Whereas, in some metazoans, the interaction between EB1 and the XMAP215/TOG family members requires an additional binding partner, fission yeast relies on a direct interaction, indicating evolutionary plasticity of this critical interaction module.


Asunto(s)
Segregación Cromosómica , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Aminoácidos/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Proteínas de Schizosaccharomyces pombe/química
6.
Genes Dev ; 24(14): 1559-69, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20634321

RESUMEN

Holliday junction (HJ) resolution is essential for chromosome segregation at meiosis and the repair of stalled/collapsed replication forks in mitotic cells. All organisms possess nucleases that promote HJ resolution by the introduction of symmetrically related nicks in two strands at, or close to, the junction point. GEN1, a member of the Rad2/XPG nuclease family, was isolated recently from human cells and shown to promote HJ resolution in vitro and in vivo. Here, we provide the first biochemical/structural characterization of GEN1, showing that, like the Escherichia coli HJ resolvase RuvC, it binds specifically to HJs and resolves them by a dual incision mechanism in which nicks are introduced in the pair of continuous (noncrossing) strands within the lifetime of the GEN1-HJ complex. In contrast to RuvC, but like other Rad2/XPG family members such as FEN1, GEN1 is a monomeric 5'-flap endonuclease. However, the unique feature of GEN1 that distinguishes it from other Rad2/XPG nucleases is its ability to dimerize on HJs. This functional adaptation provides the two symmetrically aligned active sites required for HJ resolution.


Asunto(s)
ADN Cruciforme/metabolismo , Resolvasas de Unión Holliday/metabolismo , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Resolvasas de Unión Holliday/química , Humanos , Especificidad por Sustrato
7.
EMBO J ; 32(5): 677-87, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23395900

RESUMEN

Correct segregation of duplicated chromosomes to daughter cells during mitosis requires the action of the cohesin complex. This tripartite ring-shaped molecule is involved in holding replicated sister chromatids together from S phase until anaphase onset. Establishment of stable cohesion involves acetylation of the Smc3 component of cohesin during replication by the Eco1 acetyltransferase. This has been proposed to antagonise the activity of another member of the cohesin complex, Wpl1. Here, we describe the X-ray structure of the conserved Wapl domain, and demonstrate that it binds the ATPase head of the Smc3 protein. We present data that suggest that Wpl1 may be involved in regulating the ATPase activity of cohesin, and that this may be subject to the acetylation state of Smc3. In addition, we present a structure of the Wapl domain bound to a functionally relevant segment of the Smc3 ATPase.


Asunto(s)
Ascomicetos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica , Acetilación , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominio Catalítico , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Cristalografía por Rayos X , Replicación del ADN , Polarización de Fluorescencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Análisis por Matrices de Proteínas , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Cohesinas
8.
J Cell Sci ; 125(Pt 13): 3243-53, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22454517

RESUMEN

The Ndc80 complex establishes end-on attachment of kinetochores to microtubules, which is essential for chromosome segregation. The Ndc80 subunit is characterized by an N-terminal region that binds directly to microtubules, and a long coiled-coil region that interacts with Nuf2. A loop region in Ndc80 that generates a kink in the structure disrupts the long coiled-coil region but the exact function of this loop, has until now, not been clear. Here we show that this loop region is essential for end-on attachment of kinetochores to microtubules in human cells. Cells expressing loop mutants of Ndc80 are unable to align the chromosomes, and stable kinetochore fibers are absent. Through quantitative mass spectrometry and immunofluorescence we found that the binding of the spindle and kinetochore associated (Ska) complex depends on the loop region, explaining why end-on attachment is defective. This underscores the importance of the Ndc80 loop region in coordinating chromosome segregation through the recruitment of specific proteins to the kinetochore.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Segregación Cromosómica , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Clonación Molecular , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Humanos , Espectrometría de Masas/métodos , Metafase , Microtúbulos/genética , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Interferencia de ARN , Análisis de Secuencia de Proteína/métodos
9.
Bioessays ; 39(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28266712

Asunto(s)
ADN
10.
J Biol Chem ; 287(7): 5173-9, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22215672

RESUMEN

We have solved the x-ray structure of the N-terminal half of the yeast kinetochore protein Ndc10 at 1.9 Å resolution. This essential protein is a key constituent of the budding yeast centromere and is essential for the recruitment of the centromeric nucleosome and establishment of the kinetochore. The fold of the protein shows unexpected similarities to the tyrosine recombinase/λ-integrase family of proteins, most notably Cre, with some variation in the relative position of the subdomains. This finding offers new insights into kinetochore evolution and the adaptation of a well studied protein fold to a novel role. By comparison with tyrosine recombinases and mutagenesis studies, we have been able to define some of the key DNA-binding motifs.


Asunto(s)
Cromosomas Fúngicos/química , Proteínas de Unión al ADN/química , Evolución Molecular , Integrasas/química , Cinetocoros/química , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Integrasas/genética , Integrasas/metabolismo , Cinetocoros/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína
11.
J Biol Chem ; 286(5): 4021-6, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21115484

RESUMEN

The centromeric DNA of all eukaryotes is assembled upon a specialized nucleosome containing a histone H3 variant known as CenH3. Despite the importance and conserved nature of this protein, the characteristics of the centromeric nucleosome are still poorly understood. In particular, the stoichiometry and DNA-binding properties of the CenH3 nucleosome have been the subject of some debate. We have characterized the budding yeast centromeric nucleosome by biochemical and biophysical methods and show that it forms a stable octamer containing two copies of the Cse4 protein and wraps DNA in a left-handed supercoil, similar to the canonical H3 nucleosome. The DNA-binding properties of the recombinant nucleosome are identical to those observed in vivo demonstrating that the octameric structure is physiologically relevant.


Asunto(s)
Centrómero/ultraestructura , Nucleosomas/química , Saccharomycetales/ultraestructura , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Histonas/genética , Proteínas Mutantes , Multimerización de Proteína , Saccharomycetales/genética
12.
PLoS One ; 16(5): e0251261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33970942

RESUMEN

Chl1 is a member of the XPD family of 5'-3' DNA helicases, which perform a variety of roles in genome maintenance and transmission. They possess a variety of unique structural features, including the presence of a highly variable, partially-ordered insertion in the helicase domain 1. Chl1 has been shown to be required for chromosome segregation in yeast due to its role in the formation of persistent chromosome cohesion during S-phase. Here we present structural and biochemical data to show that Chl1 has the same overall domain organisation as other members of the XPD family, but with some conformational alterations. We also present data suggesting the insert domain in Chl1 regulates its DNA binding.


Asunto(s)
Chaetomium/enzimología , ADN Helicasas/química , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Chaetomium/química , Chaetomium/genética , Cristalografía por Rayos X , ADN Helicasas/genética , ADN Helicasas/metabolismo , Conformación Proteica , Fase S/fisiología , Intercambio de Cromátides Hermanas , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
13.
Nature ; 432(7014): 187-93, 2004 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-15538360

RESUMEN

RecBCD is a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3' tail of the DNA. Here we present the crystal structure of RecBCD bound to a DNA substrate. In this initiation complex, the DNA duplex has been split across the RecC subunit to create a fork with the separated strands each heading towards different helicase motor subunits. The strands pass along tunnels within the complex, both emerging adjacent to the nuclease domain of RecB. Passage of the 3' tail through one of these tunnels provides a mechanism for the recognition of a Chi sequence by RecC within the context of double-stranded DNA. Gating of this tunnel suggests how nuclease activity might be regulated.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/metabolismo , Escherichia coli/enzimología , Exodesoxirribonucleasa V/química , Exodesoxirribonucleasa V/metabolismo , Cristalización , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN Helicasas/química , ADN Helicasas/metabolismo , Endonucleasas/química , Endonucleasas/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Conformación de Ácido Nucleico , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
14.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31371524

RESUMEN

Centromeric chromatin in fission yeast is distinguished by the presence of nucleosomes containing the histone H3 variant Cnp1CENP-A Cell cycle-specific deposition of Cnp1 requires the Mis16-Mis18-Mis19 complex, which is thought to direct recruitment of Scm3-chaperoned Cnp1/histone H4 dimers to DNA. Here, we present the structure of the essential Mis18 partner protein Mis19 and describe its interaction with Mis16, revealing a bipartite-binding site. We provide data on the stoichiometry and overall architecture of the complex and provide detailed insights into the Mis18-Mis19 interface.


Asunto(s)
Proteínas Portadoras/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Unión Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
15.
Sci Rep ; 7: 44313, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28290497

RESUMEN

Sister-chromatid cohesion is established by Eco1-mediated acetylation on two conserved tandem lysines in the cohesin Smc3 subunit. However, the molecular basis of Eco1 substrate recognition and acetylation in cohesion is not fully understood. Here, we discover and rationalize the substrate specificity of Eco1 using mass spectrometry coupled with in-vitro acetylation assays and crystallography. Our structures of the X. laevis Eco2 (xEco2) bound to its primary and secondary Smc3 substrates demonstrate the plasticity of the substrate-binding site, which confers substrate specificity by concerted conformational changes of the central ß hairpin and the C-terminal extension.


Asunto(s)
Acetiltransferasas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Xenopus/química , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Expresión Génica , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
16.
Nat Commun ; 8: 13952, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28059076

RESUMEN

The functions of cohesin are central to genome integrity, chromosome organization and transcription regulation through its prevention of premature sister-chromatid separation and the formation of DNA loops. The loading of cohesin onto chromatin depends on the Scc2-Scc4 complex; however, little is known about how it stimulates the cohesion-loading activity. Here we determine the large 'hook' structure of Scc2 responsible for catalysing cohesin loading. We identify key Scc2 surfaces that are crucial for cohesin loading in vivo. With the aid of previously determined structures and homology modelling, we derive a pseudo-atomic structure of the full-length Scc2-Scc4 complex. Finally, using recombinantly purified Scc2-Scc4 and cohesin, we performed crosslinking mass spectrometry and interaction assays that suggest Scc2-Scc4 uses its modular structure to make multiple contacts with cohesin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia Conservada , Modelos Moleculares , Unión Proteica , Subunidades de Proteína/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
17.
Cancer Discov ; 7(2): 218-233, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28069571

RESUMEN

Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. SIGNIFICANCE: We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Inestabilidad Cromosómica , Edición Génica/métodos , Genómica/métodos , Neoplasias/genética , Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Células HCT116 , Células HT29 , Humanos , Mitosis , Neoplasias/metabolismo
18.
Nucleic Acids Res ; 30(20): 4329-38, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12384579

RESUMEN

Replicative polymerases of eukaryotes, prokaryotes and archaea obtain processivity using ring-shaped DNA sliding clamps that are loaded onto DNA by clamp loaders [replication factor C (RFC) in eukaryotes]. In this study, we cloned the two genes for the subunits of the RFC homologue of the euryarchaeon Archaeoglobus fulgidus. The proteins were expressed and purified from Escherichia coli both individually and as a complex. The afRFC subunits form a heteropentameric complex consisting of one copy of the large subunit and four copies of the small subunits. To analyse the functionality of afRFC, we also expressed the A.fulgidus PCNA homologue and a type B polymerase (PolB1) in E.coli. In primer extension assays, afRFC stimulated the processivity of afPolB1 in afPCNA-dependent reactions. Although the afRFC complex showed significant DNA-dependent ATPase activity, which could be further stimulated by afPCNA, neither of the isolated afRFC subunits showed this activity. However, both the large and small afRFC subunits showed interaction with afPCNA. Furthermore, we demonstrate that ATP binding, but not hydrolysis, is needed to stimulate interactions of the afRFC complex with afPCNA and DNA.


Asunto(s)
Archaeoglobus fulgidus/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Archaeoglobus fulgidus/enzimología , Archaeoglobus fulgidus/metabolismo , Clonación Molecular , ADN/biosíntesis , ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Genes Arqueales , Sustancias Macromoleculares , Peso Molecular , Polinucleótidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Subunidades de Proteína , ARN/metabolismo , Proteína de Replicación C , Especificidad por Sustrato
19.
Open Biol ; 6(4): 160040, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27249344

RESUMEN

The Mis12 complex forms the central scaffold of the kinetochore and serves to bridge the chromatin and microtubule-binding activities of the inner and outer layers, respectively. Two recent studies provide new structural insights into the formation of this complex, and highlight some intriguing adaptations found in the Drosophila kinetochore.


Asunto(s)
Cinetocoros/metabolismo , Animales , Segregación Cromosómica , Drosophila melanogaster/metabolismo , Humanos , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
J Mol Biol ; 343(3): 547-57, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15465044

RESUMEN

Archaea contain one or more proteins with homology to eukaryotic ORC/Cdc6 proteins. Sequence analysis suggests the existence of at least two subfamilies of these proteins, for which we propose the nomenclature ORC1 and ORC2. We have determined crystal structures of the ORC2 protein from the archaeon Aeropyrum pernix in complexes with ADP or a non-hydrolysable ATP analogue, ADPNP. Between two crystal forms, there are three crystallographically independent views of the ADP complex and two of the ADPNP complex. The protein molecules in the three complexes with ADP adopt very different conformations, while the two complexes with ADPNP are the same. These structures indicate that there is considerable conformational flexibility in ORC2 but that ATP binding stabilises a single conformation. We show that the ORC2 protein can bind DNA, and that this activity is associated with the C-terminal domain of the protein. We present a model for the interaction of the winged helix (WH) domain of ORC2 with DNA that differs from that proposed previously for Pyrobaculum aerophilum ORC/Cdc6.


Asunto(s)
Aeropyrum/química , Proteínas Arqueales/química , Nucleótidos/metabolismo , Conformación Proteica , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análisis , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Sitios de Unión , Cristalografía por Rayos X , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA