Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 480(8): 539-553, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36688417

RESUMEN

The self-assembly of bacterial microcompartments is the result of several genetic, biochemical, and physical stimuli orchestrating inside the bacterial cell. In this work, we use 1,2-propanediol utilization microcompartments as a paradigm to identify the factors that physically drive the self-assembly of MCP proteins in vitro using its major shell protein and major encapsulated enzyme. We find that a major shell protein PduBB' tends to self-assemble under macromolecular crowded environment and suitable ionic strength. Microscopic visualization and biophysical studies reveal phase separation to be the principle mechanism behind the self-association of shell protein in the presence of salts and macromolecular crowding. The shell protein PduBB' interacts with the enzyme diol-dehydratase PduCDE and co-assemble into phase separated liquid droplets. The co-assembly of PduCDE and PduBB' results in the enhancement of catalytic activity of the enzyme. The shell proteins that make up PduBB' (PduB and PduB') have contrasting self-assembly behavior. While N-terminal truncated PduB' has a high self-associating property and forms solid assemblies that separates out of solution, the longer component of the shell protein PduBM38L is more soluble and shows least tendency to undergo phase separation. A combination of spectroscopic, imaging and biochemical techniques shows the relevance of divalent cation Mg2+ in providing stability to intact PduMCP. Together our results suggest a combination of protein-protein interactions and phase separation guiding the self-assembly of Pdu shell protein and enzyme in the solution phase.


Asunto(s)
Proteínas Bacterianas , Enzimas , Proteínas Bacterianas/química , Enzimas/química
2.
Microbiology (Reading) ; 169(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37971493

RESUMEN

Bacterial microcompartments (MCPs) are widespread protein-based organelles that play important roles in the global carbon cycle and in the physiology of diverse bacteria, including a number of pathogens. MCPs consist of metabolic enzymes encapsulated within a protein shell. The main roles of MCPs are to concentrate enzymes together with their substrates (to increase reaction rates) and to sequester harmful metabolic intermediates. Prior studies indicate that MCPs have a selectively permeable protein shell, but the mechanisms that allow selective transport across the shell are not fully understood. Here we examine transport across the shell of the choline utilization (Cut) MCP of Escherichia coli 536, which has not been studied before. The shell of the Cut MCP is unusual in consisting of one pentameric and four hexameric bacterial microcompartment (BMC) domain proteins. It lacks trimeric shell proteins, which are thought to be required for the transport of larger substrates and enzymatic cofactors. In addition, its four hexameric BMC domain proteins are very similar in amino acid sequence. This raises questions about how the Cut MCP mediates the selective transport of the substrate, products and cofactors of choline metabolism. In this report, site-directed mutagenesis is used to modify the central pores (the main transport channels) of all four Cut BMC hexamers to assess their transport roles. Our findings indicate that a single shell protein, CmcB, plays the major role in choline transport across the shell of the Cut MCP and that the electrostatic properties of the CmcB pore also impact choline transport. The implications of these findings with regard to the higher-order structure of MCPs are discussed.


Asunto(s)
Proteínas Bacterianas , Colina , Proteínas Bacterianas/metabolismo , Colina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacterias/metabolismo , Secuencia de Aminoácidos , Orgánulos/metabolismo
3.
Chembiochem ; 23(9): e202100694, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35229962

RESUMEN

A classic example of an all-protein natural nano-bioreactor, the bacterial microcompartment is a prokaryotic organelle that confines enzymes in a small volume enveloped by an outer protein shell. These protein compartments metabolize specific organic molecules, allowing bacteria to survive in restricted nutrient environments. In this work, 1,2-propanediol utilization microcompartment (PduMCP) was used as a model to study the effect of molecular confinement on the stability and catalytic activity of native enzymes in the microcompartment. A combination of enzyme assays, spectroscopic techniques, binding assays, and computational analysis were used to evaluate the impact of the major shell protein PduBB' on the stability and activity of PduMCP's signature enzyme, dioldehydratase PduCDE. While free PduCDE shows ∼45 % reduction in its optimum activity (activity at 37 °C) when exposed to a temperature of 45 °C, it retains similar activity up to 50 °C when encapsulated within PduMCP. PduBB', a major component of the outer shell of PduMCP, preserves the catalytic efficiency of PduCDE under thermal stress and prevents temperature-induced unfolding and aggregation of PduCDE in vitro. We observed that while both PduB and PduB' interact with the enzyme with micromolar affinity, only the PduBB' combination influences its activity and stability, highlighting the importance of the unique PduBB' combination in the functioning of PduMCP.


Asunto(s)
Pruebas de Enzimas , Propilenglicol , Catálisis , Células Procariotas , Temperatura
4.
Amino Acids ; 54(3): 441-454, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35103826

RESUMEN

Fabrication and development of nanoscale materials with tunable structural and functional properties require a dynamic arrangement of nanoparticles on architectural templates. The function of nanoparticles not only depends on the property of the nanoparticles but also on their spatial orientations. Proteins with self-assembling properties which can be genetically engineered to varying architectural designs for scaffolds can be used to develop different orientations of nanoparticles in three dimensions. Here, we report the use of naturally self-assembling bacterial micro-compartment shell protein (PduA) assemblies in 2D and its single-point mutant variant (PduA[K26A]) in 3D architectures for the reduction and fabrication of gold nanoparticles. Interestingly, the different spatial organization of gold nanoparticles resulted in a smaller size in the 3D architect scaffold. Here, we observed a two-fold increase in catalytic activity and six-fold higher affinity toward TMB (3,3',5,5'-tetramethylbenzidine) substrate as a measure of higher peroxidase activity (nanozymatic) in the case of PduA[K26A] 3D scaffold. This approach demonstrates that the hierarchical organization of scaffold enables the fine-tuning of nanoparticle properties, thus paving the way toward the design of new nanoscale materials.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Catálisis , Oro/química , Nanopartículas del Metal/química , Nanopartículas/química
5.
Org Biomol Chem ; 20(26): 5284-5292, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35713091

RESUMEN

We report the design, synthesis, and study of light-induced shape-changing azomacrocycles. These systems have been incorporated with azobenzene photoswitches using alkoxy tethers and triazole units to afford flexibility and binding. We envision that such azomacrocycles are capable of reversibly binding with the guest molecule. Remarkably, we have demonstrated fully light-controlled fluorescence quenching and enhancement in the monomeric emission of pyrene (guest). Such modulations have been achieved by the photoisomerization of the azomacrocycle and, in turn, host-guest interactions. Also, the azomacrocycles tend to aggregate and can also be controlled by light or heat. We uncovered such phenomena using spectroscopic, microscopic, and isothermal titration calorimetry (ITC) studies and computations.


Asunto(s)
Pirenos , Calorimetría/métodos , Espectrometría de Fluorescencia/métodos
6.
Biophys J ; 118(3): 720-728, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31952808

RESUMEN

Mutations in p53 protein, especially in the DNA-binding domain, is one of the major hallmarks of cancer. The R273 position is a DNA-contact position and has several oncogenic variants. Surprisingly, cancer patients carrying different mutant variants of R273 in p53 have different survival rates, indicating that the DNA-contact inhibition may not be the sole reason for reduced survival with R273 variants. Here, we probed the properties of three major oncogenic variants of the wild-type (WT) p53: [R273H]p53, [R273C]p53, and [R273L]p53. Using a series of biophysical, biochemical, and theoretical simulation studies, we observe that these oncogenic variants of the p53 not only suffer a loss in DNA binding, but they also show distinct structural stability, aggregation, and toxicity profiles. The WTp53 and the [R273H]p53 show the least destabilization and aggregation propensity. [R273C]p53 aggregation is disulfide mediated, leading to cross-ß, thioflavin-T-positive aggregates, whereas hydrophobic interactions dominate self-assembly in [R273L]p53, leading to a mixture of amyloid and amorphous aggregates. Molecular dynamics simulations indicate different contact maps and secondary structures for the different variants along the course of the simulations. Our study indicates that each of the R273 variants has its own distinct property of stability and self-assembly, the molecular basis of which may lead to different types of cancer pathogenesis in vivo. These studies will aid the design of therapeutic strategies for cancer using residue-specific or process-specific protein aggregation as a target.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , ADN , Humanos , Simulación de Dinámica Molecular , Mutación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Adv Exp Med Biol ; 1112: 333-344, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30637708

RESUMEN

The propanediol utilization bacterial microcompartments are specialized protein-based organelles in Salmonella that facilitate the catabolism of 1,2-propanediol when available as the sole carbon source. This smart prokaryotic cell organelle compartmentalizes essential enzymes and substrates in a volume of a few attoliters compared to the femtoliter volume of a bacterial cell thereby enhancing the enzyme kinetics and properly orchestrating the downstream pathways. A shell or coat, which is composed of a few thousand protein subunits, wraps a chain of consecutively acting enzymes and serves as ducts for the diffusion of substrates, cofactors, and products into and out of the core of the microcompartment. In this article we bring together the properties of the wrappers of the propanediol utilization bacterial microcompartments to update our understanding on the mechanism of the formation of these unique wraps, their assembly, and interaction with the encapsulated enzymes.


Asunto(s)
Orgánulos/química , Propilenglicol/química , Salmonella/química
8.
Proc Natl Acad Sci U S A ; 112(10): 2990-5, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713376

RESUMEN

Bacterial microcompartments are widespread prokaryotic organelles that have important and diverse roles ranging from carbon fixation to enteric pathogenesis. Current models for microcompartment function propose that their outer protein shell is selectively permeable to small molecules, but whether a protein shell can mediate selective permeability and how this occurs are unresolved questions. Here, biochemical and physiological studies of structure-guided mutants are used to show that the hexameric PduA shell protein of the 1,2-propanediol utilization (Pdu) microcompartment forms a selectively permeable pore tailored for the influx of 1,2-propanediol (the substrate of the Pdu microcompartment) while restricting the efflux of propionaldehyde, a toxic intermediate of 1,2-propanediol catabolism. Crystal structures of various PduA mutants provide a foundation for interpreting the observed biochemical and phenotypic data in terms of molecular diffusion across the shell. Overall, these studies provide a basis for understanding a class of selectively permeable channels formed by nonmembrane proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Orgánulos/metabolismo , Proteínas Bacterianas/química , Glicerol/metabolismo , Propilenglicol/metabolismo , Conformación Proteica
9.
Proc Natl Acad Sci U S A ; 109(37): 14995-5000, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927404

RESUMEN

Bacterial microcompartments (MCPs) are a widespread family of proteinaceous organelles that consist of metabolic enzymes encapsulated within a protein shell. For MCPs to function specific enzymes must be encapsulated. We recently reported that a short N-terminal targeting sequence of propionaldehyde dehydrogenase (PduP) is necessary and sufficient for the packaging of enzymes into a MCP that functions in 1,2-propanediol (1,2-PD) utilization (Pdu) by Salmonella enterica. Here we show that encapsulation is mediated by binding of the PduP targeting sequence to a short C-terminal helix of the PduA shell protein. In vitro studies indicated binding between PduP and PduA (and PduJ) but not other MCP shell proteins. Alanine scanning mutagenesis determined that the key residues involved in binding are E7, I10, and L14 of PduP and H81, V84, and L88 of PduA. In vivo targeting studies indicated that the binding between the N terminus of PduP and the C terminus of PduA is critical for encapsulation of PduP within the Pdu MCP. Structural models suggest that the N terminus of PduP and C terminus of PduA both form helical structures that bind one another via the key residues identified by mutagenesis. Cumulatively, these results show that the N-terminal targeting sequence of PduP promotes its encapsulation by binding to MCP shell proteins. This is a unique report determining the mechanism by which a MCP targeting sequence functions. We propose that specific interactions between the termini of shell proteins and lumen enzymes have general importance for guiding the assembly and the higher level organization of bacterial MCPs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Modelos Moleculares , Orgánulos/enzimología , Oxidorreductasas/metabolismo , Salmonella enterica/metabolismo , Aldehídos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Mutagénesis , Oxidorreductasas/química , Oxidorreductasas/genética , Unión Proteica , Alineación de Secuencia
10.
Curr Res Struct Biol ; 7: 100133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435052

RESUMEN

Liquid-liquid phase separation plays a crucial role in cellular physiology, as it leads to the formation of membrane-less organelles in response to various internal stimuli, contributing to various cellular functions. However, the influence of exogenous stimuli on this process in the context of disease intervention remains unexplored. In this current investigation, we explore the impact of doxorubicin on the abnormal self-assembly of p53 using a combination of biophysical and imaging techniques. Additionally, we shed light on the potential mechanisms behind chemoresistance in cancer cells carrying mutant p53. Our findings reveal that doxorubicin co-localizes with both wild-type p53 (WTp53) and its mutant variants. Our in vitro experiments indicate that doxorubicin interacts with the N-terminal-deleted form of WTp53 (WTp53ΔNterm), inducing liquid-liquid phase separation, ultimately leading to protein aggregation. Notably, the p53 variants at the R273 position exhibit a propensity for phase separation even in the absence of doxorubicin, highlighting the destabilizing effects of point mutations at this position. The strong interaction between doxorubicin and p53 variants, along with its localization within the protein condensates, provides a potential explanation for the development of chemotherapy resistance. Collectively, our cellular and in vitro studies emphasize the role of exogenous agents in driving phase separation-mediated p53 aggregation.

11.
J Biomol Struct Dyn ; 41(18): 8891-8901, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36318590

RESUMEN

Intrinsically disordered regions in proteins have been functionally linked to the protein-protein interactions and genesis of several membraneless organelles. Depending on their residual makeup, hydrophobicity or charge distribution they may remain in extended form or may assume certain conformations upon biding to a partner protein or peptide. The present work investigates the distribution and potential roles of disordered regions in the integral proteins of 1,2-propanediol utilization microcompartments. We use bioinformatics tools to identify the probable disordered regions in the shell proteins and enzyme of the 1,2-propanediol utilization microcompartment. Using a combination of computational modelling and biochemical techniques we elucidate the role of disordered terminal regions of a major shell protein and enzyme. Our findings throw light on the importance of disordered regions in the self-assembly, providing flexibility to shell protein and mediating its interaction with a native enzyme.Communicated by Ramaswamy H. Sarma.

12.
J Mater Chem B ; 11(22): 4842-4854, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37194349

RESUMEN

Bacterial microcompartments (BMCs) are sophisticated all-protein bionanoreactors widely spread in bacterial phyla. BMCs facilitate diverse metabolic reactions, which assist bacterial survivability in normal (by fixing carbon dioxide) and energy dearth conditions. The past seven decades have uncovered numerous intrinsic features of BMCs, which have attracted researchers to tailor them for customised applications, including synthetic nanoreactors, scaffold nano-materials for catalysis or electron conduction, and delivery vehicles for drug molecules or RNA/DNA. In addition, BMCs provide a competitive advantage to pathogenic bacteria and this can pave a new path for antimicrobial drug design. In this review, we discuss different structural and functional aspects of BMCs. We also highlight the potential employment of BMCs for novel applications in bio-material science.


Asunto(s)
Proteínas Bacterianas , Ciencia de los Materiales , Proteínas Bacterianas/metabolismo , Orgánulos/metabolismo , Bacterias/metabolismo , Dióxido de Carbono
13.
J Bacteriol ; 194(8): 1912-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22343294

RESUMEN

Diverse bacteria use proteinaceous microcompartments (MCPs) to optimize metabolic pathways that have toxic or volatile intermediates. MCPs consist of metabolic enzymes encased within a protein shell that provides a defined environment. In Salmonella enterica, a MCP is involved in B(12)-dependent 1,2-propanediol utilization (Pdu MCP). In this report, we show that the protein PduM is required for the assembly and function of the Pdu MCP. The results of tandem mass spectrometry and Western blot analyses show that PduM is a component of the Pdu MCP. Electron microscopy shows that a pduM deletion mutant forms MCPs with abnormal morphology. Growth tests and metabolite measurements establish that a pduM deletion mutant is unable to form functional MCPs. PduM is unrelated in sequence to proteins of known function and hence may represent a new class of MCP structural proteins. We also report a modified protocol for the purification of Pdu MCP from Salmonella which allows isolation of milligram amounts of MCPs in about 4 h. We believe that this protocol can be extended or modified for the purification of MCPs from diverse bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobamidas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Propilenglicol/metabolismo , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Eliminación de Gen , Redes y Vías Metabólicas/fisiología , Orgánulos/metabolismo , Fenotipo , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo
14.
Colloids Surf B Biointerfaces ; 212: 112371, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35131711

RESUMEN

The aggregation of α-synuclein is a prominent feature of Parkinson's disease. It is induced by factors such as genetic mutations and presence of metal salts leading to Parkinson's like symptoms. Existing case studies show that patients undergoing cancer chemotherapeutics are also prone to developing Parkinson's like symptoms. However, the underlying cause behind onset of these symptoms is not understood. It is not clear whether the administration of chemotherapeutic drugs alter the structural stability of α-synuclein. In the present study, we address this question by looking into the effect of chemotherapeutic drug namely doxorubicin on the α-synuclein stability. Using complementary spectroscopic, molecular docking and imaging techniques, we observe that doxorubicin interacted with central aggregation prone region of α-synuclein and induces destabilization leading to aggregation. We also show that the combination of doxorubicin and L-DOPA drugs impedes the α-synuclein aggregation. This may explain the reason behind the effectiveness of using L-DOPA against Parkinson's like symptoms.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Doxorrubicina/farmacología , Humanos , Levodopa/farmacología , Simulación del Acoplamiento Molecular , alfa-Sinucleína/química
15.
Chem Commun (Camb) ; 58(62): 8634-8637, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35819054

RESUMEN

Traditional methods of molecular confinement have physicochemical barriers that restrict the free passage of substrates/products. Here, we explored liquid-liquid phase separation as a method to restrain protein-metal nanocomposites within barrier-free condensates. Confinement within liquid droplets was independent of the protein's native conformation and amplified the catalytic efficiency of metal nanocatalysts by one order of magnitude.


Asunto(s)
Metales , Nanocompuestos , Catálisis
16.
J Bacteriol ; 193(6): 1385-92, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21239588

RESUMEN

Hundreds of bacterial species use microcompartments (MCPs) to optimize metabolic pathways that have toxic or volatile intermediates. MCPs consist of a protein shell encapsulating specific metabolic enzymes. In Salmonella, an MCP is used for 1,2-propanediol utilization (Pdu MCP). The shell of this MCP is composed of eight different types of polypeptides, but their specific functions are uncertain. Here, we individually deleted the eight genes encoding the shell proteins of the Pdu MCP. The effects of each mutation on 1,2-PD degradation and MCP structure were determined by electron microscopy and growth studies. Deletion of the pduBB', pduJ, or pduN gene severely impaired MCP formation, and the observed defects were consistent with roles as facet, edge, or vertex protein, respectively. Metabolite measurements showed that pduA, pduBB', pduJ, or pduN deletion mutants accumulated propionaldehyde to toxic levels during 1,2-PD catabolism, indicating that the integrity of the shell was disrupted. Deletion of the pduK, pduT, or pduU gene did not substantially affect MCP structure or propionaldehyde accumulation, suggesting they are nonessential to MCP formation. However, the pduU or pduT deletion mutants grew more slowly than the wild type on 1,2-PD at saturating B(12), indicating that they are needed for maximal activity of the 1,2-PD degradative enzymes encased within the MCP shell. Considering recent crystallography studies, this suggests that PduT and PduU may mediate the transport of enzyme substrates/cofactors across the MCP shell. Interestingly, a pduK deletion caused MCP aggregation, suggesting a role in the spatial organization of MCP within the cytoplasm or perhaps in segregation at cell division.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cobamidas/metabolismo , Propilenglicol/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Aldehídos/metabolismo , Aldehídos/toxicidad , Eliminación de Gen , Microscopía Electrónica , Orgánulos/metabolismo , Orgánulos/ultraestructura , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/ultraestructura
17.
J Am Chem Soc ; 133(12): 4348-58, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21381732

RESUMEN

A ß-sheet-binding scaffold was equipped with long-range chemical groups for tertiary contacts toward specific regions of the Alzheimer's Aß fibril. The new constructs contain a trimeric aminopyrazole carboxylic acid, elongated with a C-terminal binding site, whose influence on the aggregation behavior of the Aß(42) peptide was studied. MD simulations after trimer docking to the anchor point (F19/F20) suggest distinct groups of complex structures each of which featured additional specific interactions with characteristic Aß regions. Members of each group also displayed a characteristic pattern in their antiaggregational behavior toward Aß. Specifically, remote lipophilic moieties such as a dodecyl, cyclohexyl, or LPFFD fragment can form dispersive interactions with the nonpolar cluster of amino acids between I31 and V36. They were shown to strongly reduce Thioflavine T (ThT) fluorescence and protect cells from Aß lesions (MTT viability assays). Surprisingly, very thick fibrils and a high ß-sheet content were detected in transmission electron microscopy (TEM) and CD spectroscopic experiments. On the other hand, distant single or multiple lysines which interact with the ladder of stacked E22 residues found in Aß fibrils completely dissolve existing ß-sheets (ThT, CD) and lead to unstructured, nontoxic material (TEM, MTT). Finally, the triethyleneglycol spacer between heterocyclic ß-sheet ligand and appendix was found to play an active role in destabilizing the turn of the U-shaped protofilament. Fluorescence correlation spectroscopy (FCS) and sedimentation velocity analysis (SVA) provided experimental evidence for some smaller benign aggregates of very thin, delicate structure (TEM, MTT). A detailed investigation by dynamic light scattering (DLS) and other methods proved that none of the new ligands acts as a colloid. The evolving picture for the disaggregation mechanism by these new hybrid ligands implies transformation of well-ordered fibrils into less structured aggregates with a high molecular weight. In the few cases where fibrillar components remain, these display a significantly altered morphology and have lost their acute cellular toxicity.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Fragmentos de Péptidos/antagonistas & inhibidores , Pirazoles/farmacología , Péptidos beta-Amiloides/toxicidad , Sitios de Unión/efectos de los fármacos , Ligandos , Modelos Moleculares , Estructura Molecular , Fragmentos de Péptidos/toxicidad , Estructura Secundaria de Proteína , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
18.
J Am Chem Soc ; 133(42): 16958-69, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-21916458

RESUMEN

Amyloidoses are diseases characterized by abnormal protein folding and self-assembly, for which no cure is available. Inhibition or modulation of abnormal protein self-assembly, therefore, is an attractive strategy for prevention and treatment of amyloidoses. We examined Lys-specific molecular tweezers and discovered a lead compound termed CLR01, which is capable of inhibiting the aggregation and toxicity of multiple amyloidogenic proteins by binding to Lys residues and disrupting hydrophobic and electrostatic interactions important for nucleation, oligomerization, and fibril elongation. Importantly, CLR01 shows no toxicity at concentrations substantially higher than those needed for inhibition. We used amyloid ß-protein (Aß) to further explore the binding site(s) of CLR01 and the impact of its binding on the assembly process. Mass spectrometry and solution-state NMR demonstrated binding of CLR01 to the Lys residues in Aß at the earliest stages of assembly. The resulting complexes were indistinguishable in size and morphology from Aß oligomers but were nontoxic and were not recognized by the oligomer-specific antibody A11. Thus, CLR01 binds already at the monomer stage and modulates the assembly reaction into formation of nontoxic structures. The data suggest that molecular tweezers are unique, process-specific inhibitors of aberrant protein aggregation and toxicity, which hold promise for developing disease-modifying therapy for amyloidoses.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/química , Hidrocarburos Aromáticos con Puentes/farmacología , Lisina/química , Organofosfatos/farmacología , Amiloidosis/tratamiento farmacológico , Animales , Sitios de Unión , Hidrocarburos Aromáticos con Puentes/química , Lisina/farmacología , Organofosfatos/química , Células PC12 , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/uso terapéutico , Ratas
19.
Trends Biochem Sci ; 31(3): 156-63, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16473013

RESUMEN

Glycosylation, particularly N-linked glycosylation, profoundly affects protein folding, oligomerization and stability. The increased efficiency of folding of glycosylated proteins could be due to the chaperone-like activity of glycans, which is observed even when the glycan is not attached to the protein. Covalently linked glycans could also facilitate oligomerization by mediating inter-subunit interactions in the protein or stabilizing the oligomer in other ways. Glycosylation also affects the rate of fibril formation in prion proteins: N-glycans reduce the rate of fibril formation, and O-glycans affect the rate either way depending on factors such as position and orientation. It has yet to be determined whether there is any correlation among the sites of glycosylation and the ensuing effect in multiply glycosylated proteins. It is also not apparent whether there is a common pattern in the conservation of glycans in a related family of glycoproteins, but it is evident that glycosylation is a multifaceted post-translational modification. Indeed, glycosylation serves to "outfit" proteins for fold-function balance.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Pliegue de Proteína , Animales , Humanos , Modelos Biológicos , Unión Proteica , Desnaturalización Proteica
20.
Int J Biol Macromol ; 182: 959-967, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33872614

RESUMEN

Dihydromethanopterin reductase (DmrB), is a naturally occurring cage protein found in various archaeal and a few bacterial species. It exists as 24mer with cubic geometry where 8 trimeric subunits are present at the corners of each cube. Each trimer is made up of three monomeric units and six FMN, where two molecules of FMN are present at the interface of each monomer. DmrB is involved in the conversion of dihydromethanopterin to tetrahydromethanopterin using FMN as a redox equivalent. In the present study, we have used spectroscopic and biochemical techniques along with complementary bio-informatic work to understand the assembly principles of the DmrB. Our results show a concentration dependant self-assembly of DmrB which is mediated by ionic interactions. The co-factor FMN stabilizes and preserves the secondary and quaternary structure of DmrB against thermal insult, indicating that the higher order assembly of DmrB is very thermostable. Our work provides an interesting piece of information regarding the role of the co-factors in the thermostability of these classes of cage proteins. The understanding of the assembly and disassembly of this thermostable cage would enable the downstream usage of this system in various nano-biotechnological applications.


Asunto(s)
Proteínas Bacterianas/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Multimerización de Proteína , Pterinas/química , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA