Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 290(34): 21086-21100, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26100638

RESUMEN

L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function.


Asunto(s)
Canales de Calcio Tipo L/química , Canales de Calcio/química , Calcio/metabolismo , Secuencia de Aminoácidos , Canales de Calcio/genética , Canales de Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Línea Celular Transformada , Membrana Celular/química , Membrana Celular/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Expresión Génica , Humanos , Transporte Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
2.
J Biol Chem ; 286(49): 42736-42748, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21998310

RESUMEN

An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and ß3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.


Asunto(s)
Empalme Alternativo , Canales de Calcio Tipo L/química , Biofisica/métodos , Encéfalo/metabolismo , Calcio/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Línea Celular , Clonación Molecular , Células HEK293 , Humanos , Iones , Neuronas/metabolismo , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , ARN/metabolismo , Transducción de Señal
3.
J Neurophysiol ; 108(2): 365-79, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22539826

RESUMEN

Voltage-gated Ca(2+) (Ca(v))1.3 α-subunits of high voltage-activated Ca(2+) channels (HVACCs) are essential for Ca(2+) influx and transmitter release in cochlear inner hair cells and therefore for signal transmission into the central auditory pathway. Their absence leads to deafness and to striking structural changes in the auditory brain stem, particularly in the lateral superior olive (LSO). Here, we analyzed the contribution of various types of HVACCs to the total Ca(2+) current (I(Ca)) in developing mouse LSO neurons to address several questions: do LSO neurons express functional Ca(v)1.3 channels? What other types of HVACCs are expressed? Are there developmental changes? Do LSO neurons of Ca(v)1.3(-/-) mice show any compensatory responses, namely, upregulation of other HVACCs? Our electrophysiological and pharmacological results showed the presence of functional Ca(v)1.3 and Ca(v)1.2 channels at both postnatal days 4 and 12. Aside from these L-type channels, LSO neurons also expressed functional P/Q-type, N-type, and, most likely, R-type channels. The relative contribution of the four different subtypes to I(Ca) appeared to be 45%, 29%, 22%, and 4% at postnatal day 12, respectively. The physiological results were flanked and extended by quantitative RT-PCR data. Altogether, LSO neurons displayed a broad repertoire of HVACC subtypes. Genetic ablation of Ca(v)1.3 resulted in functional reorganization of some other HVACCs but did not restore normal I(Ca) properties. Together, our results suggest that several types of HVACCs are of functional relevance for the developing LSO. Whether on-site loss of Ca(v)1.3, i.e., in LSO neurons, contributes to the recently described malformation of the LSO needs to be determined by using tissue-specific Ca(v)1.3(-/-) animals.


Asunto(s)
Envejecimiento/fisiología , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Neuronas/fisiología , Núcleo Olivar/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Olea
4.
J Neurosci ; 30(50): 17051-62, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21159975

RESUMEN

L-type Ca(2+) channel (LTCC)-activated signaling cascades contribute significantly to psychostimulant-induced locomotor sensitization; however, the precise contribution of the two brain-specific subunits Ca(v)1.2 and Ca(v)1.3 remains mostly unknown. In this study, by using amphetamine and cocaine locomotor sensitization in mutant mice expressing dihydropyridine (DHP)-insensitive Ca(v)1.2 LTCCs (Ca(v)1.2DHP(-/-)), we find that, as opposed to a previously identified role of the Ca(v)1.3 subunit of LTCCs in development of sensitization, the Ca(v)1.2 subunit mediates expression of amphetamine and cocaine sensitization when examined after a 14 d drug-free period. Molecular studies to further elucidate the role of Ca(v)1.2 versus Ca(v)1.3 LTCCs in activating signaling pathways in the nucleus accumbens (NAc) of drug-naive versus drug-preexposed mice examined 14 d later revealed that an acute amphetamine and cocaine challenge in drug-naive mice increases Ser133 cAMP response element-binding protein (CREB) phosphorylation in the NAc via Ca(v)1.3 channels and via a dopamine D(1)-dependent mechanism, independent of the extracellular signal-regulated kinase (ERK) pathway, an important mediator of psychostimulant-induced plasticity. In contrast, in amphetamine- and cocaine-preexposed mice, an amphetamine or cocaine challenge no longer activates CREB unless Ca(v)1.2 LTCCs are blocked. This Ca(v)1.2-dependent blunting of CREB activation that underlies expression of locomotor sensitization occurs only after extended drug-free periods and involves recruitment of D(1) receptors and the ERK pathway. Thus, our results demonstrate that specific LTCC subunits are required for the development (Ca(v)1.3) versus expression (Ca(v)1.2) of psychostimulant sensitization and that subunit-specific signaling pathways recruited by psychostimulants underlies long-term drug-induced behavioral responses.


Asunto(s)
Anfetamina/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Actividad Motora/efectos de los fármacos , Nifedipino/farmacología , Núcleo Accumbens/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Aminoacetonitrilo/análogos & derivados , Aminoacetonitrilo/farmacología , Anfetamina/antagonistas & inhibidores , Animales , Benzazepinas/farmacología , Canales de Calcio Tipo L/genética , Estimulantes del Sistema Nervioso Central/antagonistas & inhibidores , Cocaína/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Interacciones Farmacológicas , Masculino , Ratones , Ratones Noqueados , Actividad Motora/genética , Núcleo Accumbens/metabolismo
5.
J Neurosci ; 30(2): 491-504, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071512

RESUMEN

We studied wild-type (WT) and Cav1.3(-/-) mouse chromaffin cells (MCCs) with the aim to determine the isoform of L-type Ca(2+) channel (LTCC) and BK channels that underlie the pacemaker current controlling spontaneous firing. Most WT-MCCs (80%) were spontaneously active (1.5 Hz) and highly sensitive to nifedipine and BayK-8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid, methyl ester). Nifedipine blocked the firing, whereas BayK-8644 increased threefold the firing rate. The two dihydropyridines and the BK channel blocker paxilline altered the shape of action potentials (APs), suggesting close coupling of LTCCs to BK channels. WT-MCCs expressed equal fractions of functionally active Cav1.2 and Cav1.3 channels. Cav1.3 channel deficiency decreased the number of normally firing MCCs (30%; 2.0 Hz), suggesting a critical role of these channels on firing, which derived from their slow inactivation rate, sizeable activation at subthreshold potentials, and close coupling to fast inactivating BK channels as determined by using EGTA and BAPTA Ca(2+) buffering. By means of the action potential clamp, in TTX-treated WT-MCCs, we found that the interpulse pacemaker current was always net inward and dominated by LTCCs. Fast inactivating and non-inactivating BK currents sustained mainly the afterhyperpolarization of the short APs (2-3 ms) and only partially the pacemaker current during the long interspike (300-500 ms). Deletion of Cav1.3 channels reduced drastically the inward Ca(2+) current and the corresponding Ca(2+)-activated BK current during spikes. Our data highlight the role of Cav1.3, and to a minor degree of Cav1.2, as subthreshold pacemaker channels in MCCs and open new interesting features about their role in the control of firing and catecholamine secretion at rest and during sustained stimulations matching acute stress.


Asunto(s)
Médula Suprarrenal/citología , Canales de Calcio Tipo L/deficiencia , Canales de Calcio Tipo L/metabolismo , Células Cromafines/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Corteza Suprarrenal/metabolismo , Animales , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Biofisica , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Células Cultivadas , Quelantes/farmacología , Células Cromafines/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Estimulación Eléctrica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Indoles/farmacología , Ionóforos/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Venenos de Araña/farmacología , Factores de Tiempo
6.
J Neurosci ; 28(17): 4501-11, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18434528

RESUMEN

Channelopathies are often linked to defective protein folding and trafficking. Among them, the calcium channelopathy episodic ataxia type-2 (EA2) is an autosomal dominant disorder related to mutations in the pore-forming Ca(v)2.1 subunit of P/Q-type calcium channels. Although EA2 is linked to loss of Ca(v)2.1 channel activity, the molecular mechanism underlying dominant inheritance remains unclear. Here, we show that EA2 mutants as well as a truncated form (D(I-II)) of the Ca(v)3.2 subunit of T-type calcium channel are misfolded, retained in the endoplasmic reticulum, and subject to proteasomal degradation. Pulse-chase experiments revealed that misfolded mutants bind to nascent wild-type Ca(v) subunits and induce their subsequent degradation, thereby abolishing channel activity. We conclude that this destructive interaction mechanism promoted by Ca(v) mutants is likely to occur in EA2 and in other inherited dominant channelopathies.


Asunto(s)
Sustitución de Aminoácidos/genética , Canales de Calcio/genética , Canales de Calcio/metabolismo , Pliegue de Proteína , Bloqueadores de los Canales de Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/química , Canales de Calcio Tipo N/química , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Línea Celular , Línea Celular Tumoral , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Humanos , Eliminación de Secuencia
7.
Mol Pharmacol ; 75(2): 407-14, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19029287

RESUMEN

The L-type calcium channel (LTCC) isoforms Ca(v)1.2 and Ca(v)1.3 display similar 1,4-dihydropyridine (DHP) binding properties and are both expressed in mammalian brain. Recent work implicates Ca(v)1.3 channels as interesting drug targets, but no isoform-selective modulators exist. It is also unknown to what extent Ca(v)1.1 and Ca(v)1.4 contribute to L-type-specific DHP binding activity in brain. To address this question and to determine whether DHPs can discriminate between Ca(v)1.2 and Ca(v)1.3 binding pockets, we combined radioreceptor assays and quantitative polymerase chain reaction (qPCR). We bred double mutants (Ca(v)-DM) from mice expressing mutant Ca(v)1.2 channels [Ca(v)1.2DHP(-/-)] lacking high affinity for DHPs and from Ca(v)1.3 knockouts [Ca(v)1.3(-/-)]. (+)-[(3)H]isradipine binding to Ca(v)1.2DHP(-/-) and Ca(v)-DM brains was reduced to 15.1 and 4.4% of wild type, respectively, indicating that Ca(v)1.3 accounts for 10.7% of brain LTCCs. qPCR revealed that Ca(v)1.1 and Ca(v)1.4 alpha(1) subunits comprised 0.08% of the LTCC transcripts in mouse whole brain, suggesting that they cannot account for the residual binding. Instead, this could be explained by low-affinity binding (127-fold K(d) increase) to the mutated Ca(v)1.2 channels. Inhibition of (+)-[(3)H]isradipine binding to Ca(v)1.2DHP(-/-) (predominantly Ca(v)1.3) and wild-type (predominantly Ca(v)1.2) brain membranes by unlabeled DHPs revealed a 3- to 4-fold selectivity of nitrendipine and nifedipine for the Ca(v)1.2 binding pocket, a finding further confirmed with heterologously expressed channels. This suggests that small differences in their binding pockets may allow development of isoform-selective modulators for LTCCs and that, because of their very low expression, Ca(v)1.1 and Ca(v)1.4 are unlikely to serve as drug targets to treat CNS diseases.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Dihidropiridinas/metabolismo , Isoformas de Proteínas/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Encéfalo/metabolismo , Canales de Calcio Tipo L/genética , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Isoformas de Proteínas/genética
8.
Learn Mem ; 15(5): 378-86, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18441296

RESUMEN

Dihydropyridine (DHP) L-type Ca(2+) channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. Ca(V)1.2 and Ca(V)1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive Ca(V)1.2 LTCCs (Ca(V)1.2DHP(-/-) mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in Ca(V)1.2DHP(-/-) mice, indicating that it is mediated by Ca(V)1.2, but not by Ca(V)1.3 LTCCs. Supporting this conclusion, Ca(V)1.3-deficient mice (Ca(V)1.3(-/-)) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral Ca(V)1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in Ca(V)1.2DHP(-/-) mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the Ca(V)1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly Ca(V)1.3) is not sufficient to accelerate extinction of conditioned fear in mice.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Condicionamiento Clásico , Extinción Psicológica/fisiología , Miedo , Animales , Bloqueadores de los Canales de Calcio/administración & dosificación , Bloqueadores de los Canales de Calcio/efectos adversos , Canales de Calcio Tipo L/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Señales (Psicología) , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Ratones , Nifedipino/administración & dosificación , Nifedipino/efectos adversos , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/fisiología
9.
J Neurosci ; 27(14): 3855-63, 2007 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17409250

RESUMEN

Single-channel analysis revealed the existence of neuronal L-type Ca2+ channels (LTCCs) with fundamentally different gating properties; in addition to LTCCs resembling cardiac channels, LTCCs with anomalous gating were identified in a variety of neurons, including cerebellar granule cells. Anomalous LTCC gating is mainly characterized by long reopenings after repolarization following strong depolarizations or trains of action potentials. To elucidate the unknown molecular nature of anomalous LTCCs, we performed single-channel patch-clamp recordings from cerebellar granule cells of wild-type, Ca(v)1.3-/- and Ca(v)1.2DHP-/- [containing a mutation in the Ca(v)1.2 alpha1 subunit that eliminates dihydropyridine (DHP) sensitivity] mice. Quantitative reverse transcription-PCR revealed that Ca(v)1.2 accounts for 89% and Ca(v)1.3 for 11% of the LTCC transcripts in wild-type cerebellar granule cells, whereas Ca(v)1.1 and Ca(v)1.4 are expressed at insignificant levels. Anomalous LTCCs were observed in neurons of Ca(v)1.3-/- mice with a frequency not different from wild type. In the presence of the DHP agonist (+)-(S)-202-791, the typical prepulse-induced reopenings of anomalous LTCCs after repolarization were shorter in Ca(v)1.2DHP-/- neurons than in Ca(v)1.3-/- neurons. Reopenings in Ca(v)1.2DHP-/- neurons in the presence of the DHP agonist were similar to those in wild-type neurons in the absence of the agonist. These data show that Ca(v)1.2alpha1 subunits are the pore-forming subunits of anomalous LTCCs in mouse cerebellar granule cells. Given the evidence that Ca(v)1.2 channels are specifically involved in sustained Ras-MAPK (mitogen-activated protein kinase)-dependent cAMP response element-binding protein phosphorylation and LTCC-dependent hippocampal long-term potentiation (LTP) (Moosmang et al., 2005), we discuss the hypothesis that anomalous rather than cardiac-type Ca(v)1.2 channels are specifically involved in LTCC-dependent and gene transcription-dependent LTP.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cerebelo/citología , Cerebelo/metabolismo , Animales , Canales de Calcio Tipo L/fisiología , Células Cultivadas , Cerebelo/fisiología , Regulación de la Expresión Génica/fisiología , Potenciación a Largo Plazo/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología
10.
J Clin Invest ; 113(10): 1430-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15146240

RESUMEN

Ca(v)1.2 and Ca(v)1.3 L-type Ca(2+) channels (LTCCs) are believed to underlie Ca(2+) currents in brain, pancreatic beta cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause cardiovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Ca(v)1.2 alpha 1 subunits (Ca(v)1.2DHP-/-) without affecting function and expression. This allowed separation of the DHP effects of Ca(v)1.2 from those of Ca(v)1.3 and other LTCCs. DHP effects on pancreatic beta cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Ca(v)1.2DHP-/- mice, which rules out a direct role of Ca(v)1.3 for these physiological processes. Using Ca(v)1.2DHP-/- mice, we established DHPs as mood-modifying agents: LTCC activator-induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Ca(v)1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.


Asunto(s)
Afecto/fisiología , Canales de Calcio Tipo L/fisiología , Fenómenos Fisiológicos Cardiovasculares , Islotes Pancreáticos/fisiología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Afecto/efectos de los fármacos , Animales , Canales de Calcio Tipo L/deficiencia , Canales de Calcio Tipo L/genética , Dihidropiridinas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología
11.
Front Cell Neurosci ; 9: 309, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26379493

RESUMEN

Cav1.3 L-type Ca(2+)-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca(2+)- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca(2+)-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRD(HA/HA)). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca(2+)-dependent inactivation of Ca(2+)-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability.

12.
Channels (Austin) ; 6(3): 197-205, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22760075

RESUMEN

A C-terminal modulatory domain (CTM) tightly regulates the biophysical properties of Ca(v)1.3 L-type Ca(2+) channels, in particular the voltage dependence of activation (V(0.5)) and Ca(2+) dependent inactivation (CDI). A functional CTM is present in the long C-terminus of human and mouse Ca(v)1.3 (Ca(v)1.3(L)), but not in a rat long cDNA clone isolated from superior cervical ganglia neurons (rCa(v)1.3(scg)). We therefore addressed the question if this represents a species-difference and compared the biophysical properties of rCa(v)1.3(scg) with a rat cDNA isolated from rat pancreas (rCa(v)1.3(L)). When expressed in tsA-201 cells under identical experimental conditions rCa(v)1.3(L) exhibited Ca(2+) current properties indistinguishable from human and mouse Ca(v)1.3(L), compatible with the presence of a functional CTM. In contrast, rCa(v)1.3(scg) showed gating properties similar to human short splice variants lacking a CTM. rCa(v)1.3(scg) differs from rCa(v)1.3(L) at three single amino acid (aa) positions, one alternative spliced exon (exon31), and a N-terminal polymethionine stretch with two additional lysines. Two aa (S244, A2075) in rCa(v)1.3(scg) explained most of the functional differences to rCa(v)1.3(L). Their mutation to the corresponding residues in rCa(v)1.3(L) (G244, V2075) revealed that both contributed to the more negative V 0.5, but caused opposite effects on CDI. A2075 (located within a region forming the CTM) additionally permitted higher channel open probability. The cooperative action in the double-mutant restored gating properties similar to rCa(v)1.3(L). We found no evidence for transcripts containing one of the single rCa(v)1.3(scg) mutations in rat superior cervical ganglion preparations. However, the rCa(v)1.3(scg) variant provided interesting insight into the structural machinery involved in Ca(v)1.3 gating.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Activación del Canal Iónico , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio Tipo L/metabolismo , Línea Celular Transformada , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Mutación Missense , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Relación Estructura-Actividad
13.
Nat Neurosci ; 14(1): 77-84, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21131953

RESUMEN

Deafness is genetically very heterogeneous and forms part of several syndromes. So far, delayed rectifier potassium channels have been linked to human deafness associated with prolongation of the QT interval on electrocardiograms and ventricular arrhythmia in Jervell and Lange-Nielsen syndrome. Ca(v)1.3 voltage-gated L-type calcium channels (LTCCs) translate sound-induced depolarization into neurotransmitter release in auditory hair cells and control diastolic depolarization in the mouse sinoatrial node (SAN). Human deafness has not previously been linked to defects in LTCCs. We used positional cloning to identify a mutation in CACNA1D, which encodes the pore-forming α1 subunit of Ca(v)1.3 LTCCs, in two consanguineous families with deafness. All deaf subjects showed pronounced SAN dysfunction at rest. The insertion of a glycine residue in a highly conserved, alternatively spliced region near the channel pore resulted in nonconducting calcium channels that had abnormal voltage-dependent gating. We describe a human channelopathy (termed SANDD syndrome, sinoatrial node dysfunction and deafness) with a cardiac and auditory phenotype that closely resembles that of Cacna1d(-/-) mice.


Asunto(s)
Bradicardia/fisiopatología , Canales de Calcio Tipo L/fisiología , Canalopatías/fisiopatología , Sordera/fisiopatología , Adolescente , Adulto , Bradicardia/genética , Canales de Calcio Tipo L/genética , Canalopatías/genética , Sordera/congénito , Sordera/genética , Femenino , Células HEK293 , Células Ciliadas Auditivas Internas/fisiología , Haplotipos , Humanos , Masculino , Mutación , Linaje , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Nodo Sinoatrial/fisiología , Síndrome , Transfección/métodos
14.
Channels (Austin) ; 2(6): 461-73, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18797193

RESUMEN

Depolarisation-induced Ca2+ influx into electrically excitable cells is determined by the density of voltage-gated Ca2+ channels at the cell surface. Surface expression is modulated by physiological stimuli as well as by drugs and can be altered under pathological conditions. Extracellular epitope-tagging of channel subunits allows to quantify their surface expression and to distinguish surface channels from those in intracellular compartments. Here we report the first systematic characterisation of extracellularly epitope-tagged Ca(V)2.1 channels. We identified a permissive region in the pore-loop of repeat IV within the Ca(V)2.1 alpha(1) subunit, which allowed integration of several different tags (hemagluttinine [HA], double HA; 6-histidine tag [His], 9-His, bungarotoxin-binding site) without compromising alpha(1) subunit protein expression (in transfected tsA-201 cells) and function (after expression in X. laevis oocytes). Immunofluorescence studies revealed that the double-HA tagged construct (1722-HAGHA) was targeted to presynaptic sites in transfected cultured hippocampal neurons as expected for Ca(V)2.1 channels. We also demonstrate that introduction of tags into this permissive position creates artificial sites for channel modulation. This was demonstrated by partial inhibition of 1722-HA channel currents with anti-HA antibodies and the concentration-dependent stimulation or partial inhibition by Ni-nitrilo triacetic acid (NTA) and novel bulkier derivatives (Ni-trisNTA, Ni-tetrakisNTA, Ni-nitro-o-phenyl-bisNTA, Ni-nitro-p-phenyl-bisNTA). Therefore our data also provide evidence for the concept that artificial modulatory sites for small ligands can be introduced into voltage-gated Ca2+ channel for their selective modulation.


Asunto(s)
Canales de Calcio Tipo N/efectos de los fármacos , Técnicas de Sonda Molecular , Terminales Presinápticos/química , Canales de Calcio Tipo N/análisis , Electrofisiología , Hipocampo/citología , Humanos , Activación del Canal Iónico , Neuronas/fisiología , Subunidades de Proteína
15.
J Biol Chem ; 283(30): 20733-44, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18482979

RESUMEN

Low voltage activation of Ca(V)1.3 L-type Ca(2+) channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. Ca(V)1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in Ca(V)1.4 L-type Ca(2+) channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the Ca(V)1.3 alpha1 subunit C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), we investigated if a C-terminal modulatory mechanism also controls Ca(V)1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with beta3 and alpha2delta1 subunits in HEK-293 cells. Activation of calcium current through Ca(V)1.3(42A) channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several Ca(V)1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting Ca(V)1.3(DeltaC116) channels showed gating properties similar to Ca(V)1.3(42A) that were reverted by co-expression of the corresponding C-terminal peptide C(116). Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of Ca(V)1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control Ca(V)1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates Ca(V)1.3 channel activation at lower voltages expected to favor Ca(V)1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Masculino , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Neuronas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
16.
Am J Physiol Heart Circ Physiol ; 292(1): H415-25, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16980345

RESUMEN

Ca(2+) entry via L-type voltage-gated Ca(2+) channels (LVGCs) is a key factor in generating myogenic tone (MT), as dihydropyridines (DHPs) and other LVGC blockers, including Mg(2+), markedly reduce MT. Recent reports suggest, however, that elevated external Mg(2+) concentration and DHPs may also inhibit other Ca(2+)-entry pathways. Here, we explore the contribution of LVGCs to MT in intact, pressurized mesenteric small arteries using mutant mice (DHP(R/R)) expressing functional but DHP-insensitive Ca(v)1.2 channels. In wild-type (WT), but not DHP(R/R), mouse arteries, nifedipine (0.3-1.0 microM) markedly reduced MT and vasoconstriction induced by high external K(+) concentrations ([K(+)](o)), a measure of LVGC-mediated Ca(2+) entry. Blocking MT and high [K(+)](o)-induced vasoconstriction by <1 microM nifedipine in WT but not in DHP(R/R) arteries implies that Ca(2+) entry via Ca(v)1.2 LVGCs is obligatory for MT and that nifedipine inhibits MT exclusively by blocking LVGCs. We also examined the effects of Mg(2+) on MT and LVGCs. High external Mg(2+) concentration (10 mM) blocked MT, slowed the high [K(+)](o)-induced vasoconstrictions, and decreased their amplitude in WT and DHP(R/R) arteries. To verify that these effects of Mg(2+) are due to block of LVGCs, we characterized the effects of extracellular and intracellular Mg(2+) on LVGC currents in isolated mesenteric artery myocytes. DHP-sensitive LVGC currents are inhibited by both external and internal Mg(2+). The results indicate that Mg(2+) relaxes MT by inhibiting Ca(2+) influx through LVGCs. These data provide new information about the central role of Ca(v)1.2 LVGCs in generating and maintaining MT in mouse mesenteric small arteries.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Magnesio/administración & dosificación , Arterias Mesentéricas/fisiología , Músculo Liso Vascular/fisiología , Miocitos Cardíacos/fisiología , Nifedipino/administración & dosificación , Vasoconstricción/fisiología , Animales , Bloqueadores de los Canales de Calcio/administración & dosificación , Canales de Calcio Tipo L/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso Vascular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Vasoconstricción/efectos de los fármacos
17.
Am J Physiol Heart Circ Physiol ; 293(3): H1359-70, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17526649

RESUMEN

Ca(2+) sparklets are local elevations in intracellular Ca(2+) produced by the opening of a single or a cluster of L-type Ca(2+) channels. In arterial myocytes, Ca(2+) sparklets regulate local and global intracellular Ca(2+). At present, the molecular identity of the L-type Ca(2+) channels underlying Ca(2+) sparklets in these cells is undetermined. Here, we tested the hypotheses that voltage-gated calcium channel-alpha 1.3 subunit (Ca(v)1.3) can produce Ca(2+) sparklets and that Ca(v)1.2 and/or Ca(v)1.3 channels are responsible for Ca(2+) sparklets in mouse arterial myocytes. First, we investigated the functional properties of single Ca(v)1.3 channels in tsA201 cells. With 110 mM Ba(2+) as the charge carrier, Ca(v)1.3 channels had a conductance of 20 pS. This value is similar to that of Ca(v)1.2 and native L-type Ca(2+) channels. As previously shown for Ca(v)1.2 channels, Ca(v)1.3 channels can operate in two gating modes characterized by short and long open times. Expressed Ca(v)1.3 channels also produced Ca(2+) sparklets. Ca(v)1.3 sparklets had properties similar to those produced by Ca(v)1.2 and native L-type channels, including quantal amplitude, dihydropyridine sensitivity, bimodal gating, and dual-event duration times. However, the voltage dependencies of conductance and steady-state inactivation of the Ca(2+) current (I(Ca)) in arterial myocytes were similar to those recorded from cells expressing Ca(v)1.2 but not Ca(v)1.3 channels. Furthermore, nifedipine (10 microM) eliminated Ca(2+) sparklets in wild-type myocytes but not in myocytes expressing dihydropyridine-insensitive Ca(v)1.2 channels. Accordingly, Ca(v)1.3 transcript and protein were not detected in isolated arterial myocytes. We conclude that although Ca(v)1.3 channels can produce Ca(2+) sparklets, Ca(v)1.2 channels underlie I(Ca), Ca(2+) sparklets, and hence dihydropyridine-sensitive Ca(2+) influx in mouse arterial myocytes.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Electrofisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Nifedipino/farmacología , Técnicas de Placa-Clamp
18.
J Biol Chem ; 279(53): 55211-7, 2004 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-15504730

RESUMEN

Replacement of L-type Ca(2+) channel alpha(1) subunit residue Thr-1066 in segment IIIS5 by a tyrosine residue conserved in the corresponding positions of non-L-type Ca(2+) channels eliminates high dihydropyridine sensitivity through a steric mechanism. To determine the effects of this mutation on phenylalkylamine interaction, we exploited the availability of Ca(v)1.2DHP(-/-) mice containing the T1066Y mutation. In contrast to dihydropyridines, increased protein-dependent binding of the phenylalkylamine (-)-[(3)H]devapamil occurred to Ca(v)1.2DHP(-/-) mouse brain microsomes. This effect could be attributed to an at least 2-fold increase in affinity as determined by saturation analysis and binding inhibition experiments. The latter also revealed a higher affinity for (-)-verapamil but not for (-)-gallopamil. The mutation caused a pronounced slowing of (-)-[(3)H]devapamil dissociation, indicating a stabilization of the drug-channel complex. The increased affinity of mutant channels was also evident in functional studies after heterologous expression of wild type and T1066Y channels in Xenopus laevis oocytes. 100 mum (-)-verapamil inhibited a significantly larger fraction of Ba(2+) inward current through mutant than through WT channels. Our results provide evidence that phenylalkylamines also interact with the IIIS5 helix and that the geometry of the IIIS5 helix affects the access and/or binding of different chemical classes of Ca(2+) channel blockers to their overlapping binding domains. Mutation of Thr-1066 to a non-L-type tyrosine residue can be exploited to differentially affect phenylalkylamine and dihydropyridine binding to L-type Ca(2+) channels.


Asunto(s)
Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio/química , Calcio/química , Proteínas Portadoras/genética , Dihidropiridinas/química , Mutación , Esteroide Isomerasas/genética , Verapamilo/análogos & derivados , Animales , Encéfalo/metabolismo , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Electrofisiología , Galopamilo/farmacología , Homocigoto , Hibridación in Situ , Isradipino/farmacología , Cinética , Ratones , Ratones Transgénicos , Microsomas/metabolismo , Modelos Biológicos , Oocitos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Complementario/metabolismo , Proteínas Recombinantes/química , Tirosina/química , Verapamilo/farmacología , Xenopus laevis
19.
Biochem Biophys Res Commun ; 322(4): 1341-6, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15336981

RESUMEN

Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases.


Asunto(s)
Canales de Calcio Tipo L/genética , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Parálisis Periódica Hipopotasémica/fisiopatología , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/fisiopatología , Ratones , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Ceguera Nocturna/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA