Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445687

RESUMEN

Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo/fisiología , Animales , Homeostasis/fisiología , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo
2.
Exp Mol Pathol ; 99(3): 717-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26586456

RESUMEN

Mitochondrial genome mutations are associated with different pathologies. Earlier the authors of the study found an association of some mitochondrial genome mutations with atherosclerosis. In the present study, an attempt to analyze a connection of detected mutations with the age of patients with atherosclerosis was made. The investigated sample included 700 individuals, examined by ultrasonography in polyclinics of Moscow and the Moscow region. The sample was divided approximately into two equal parts. The first part included patients with carotid atherosclerosis. The second part included conventionally healthy study participants. In PCR-fragments of individuals' DNA the heteroplasmy level of investigated mutations was quantitatively measured by the method, developed by members of our laboratory on the basis of pyrosequencing technology. According to the obtained results mutations G12315A, G14459A and G15059A were significantly associated with the age of the study participants. The same time one nucleotide replacements A1555G and G14846A correlated negatively with the age at a high level of significance. Thus, in the present study an association of atherogenic mitochondrial genome mutations with age was found. Antiatherogenic mutations were correlated with the age negatively. This prompts a suggestion about common mechanisms of atherogenesis and aging.


Asunto(s)
Envejecimiento/genética , Enfermedades de las Arterias Carótidas/genética , ADN Mitocondrial/genética , Factores de Edad , Humanos , Mutación , Reacción en Cadena de la Polimerasa
3.
Gerontology ; 61(4): 343-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25531813

RESUMEN

Atherosclerosis is a complex disease which can be described as an excessive fibrofatty, proliferative, inflammatory response to damage to the artery wall involving several cell types such as smooth muscle cells, monocyte-derived macrophages, lymphocytes, dendritic cells and platelets. On the other hand, atherosclerosis is a typical age-related degenerative pathology, which is characterized by signs of cell senescence in the arterial wall including reduced cell proliferation, irreversible growth arrest and apoptosis, increased DNA damage, the presence of epigenetic modifications, shortening of telomere length and mitochondrial dysfunction. The most prominent characteristics of mitochondrial aging are their structural alterations and mitochondrial DNA damage. The mechanisms of mitochondrial genome damage in the development of chronic age-related diseases such as atherosclerosis are not yet well understood. This review focuses on the latest findings from studies of those mutations of the mitochondrial genome which may play an important role in the development of atherosclerosis and which are, at the same time, also markers of mitochondrial aging and cell senescence.


Asunto(s)
Envejecimiento/fisiología , Aterosclerosis/etiología , Senescencia Celular/fisiología , Daño del ADN/fisiología , ADN Mitocondrial/fisiología , Humanos
4.
Curr Med Chem ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38441018

RESUMEN

BACKGROUND AND AIMS: The role of mitophagy in atherosclerosis has been extensively studied during the last few years. It was shown that mitophagy is involved in the regulation of macrophages, which are important players as immune cells in atherosclerosis development. In this study, we investigated the relationship between mitophagy and response to inflammatory stimulation of macrophage-like cells. Six cybrid cell lines with normal mitophagy, that is, increasing in response to stimulation, and 7 lines with defective mitophagy not responding to stimulation were obtained. The objective of the study was to compare the nature of the inflammatory response in normal and defective mitophagy in order to elucidate the role of mitophagy defects in inflammation. METHODS: We used cytoplasmic hybrids (cybrids) as cellular models, created using mitochondrial DNA from different atherosclerosis patients. Mitophagy was stimulated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and assessed as the degree of colocalization of mitochondria with lysosomes using confocal microscopy. Western blotting methods were used for the determination of proteins involved in the exact mechanism of mitophagy. Experiments with stimulation of mitophagy show a high correlation between these two approaches (microscopy and blotting). The pro-inflammatory response of cybrids was stimulated with bacterial lipopolysaccharide (LPS). The extent of the inflammatory response was assessed by the secretion of cytokines CCL2, IL8, IL6, IL1ß, and TNF measured by ELISA. RESULTS: Basal level of secretion of cytokines CCL2, IL8 and TNF was 1.5-2 times higher in cultures of cybrids with defective mitophagy compared to cells with normal mitophagy. This suggests a persistently elevated inflammatory response in cells with defective mitophagy, even in the absence of an inflammatory stimulus. Such cells in the tissue will constantly recruit other immune cells, which is characteristic of macrophages derived from monocytes circulating in the blood of patients with atherosclerosis. We observed significant differences in the degree and type of response to inflammatory activation in cybrids with defective mitophagy. These differences were not so much quantitative as they were dramatically qualitative. Compared with cells with normal mitophagy, in cells with defective mitophagy, the relative (to basal) secretion of IL8, IL6 and IL1b increased after the second LPS activation. This indicates a possible lack of tolerance to inflammatory activation in cells with defective mitophagy, since typically, re-activation reveals a smaller pro-inflammatory cytokine response, allowing the inflammatory process to resolve. In cells with normal mitophagy, exactly this normal (tolerant) inflammatory reaction was observed. CONCLUSION: Data on the involvement of mitophagy, including defective mitophagy, in disturbances of the inflammatory response in sepsis, viral infections, autoimmune diseases and other pathologies have previously been reported. In this work, we studied the role of defective mitophagy in non-infectious chronic inflammatory diseases using the example of atherosclerosis. We showed a dramatic disruption of the inflammatory response associated with defective mitophagy. Compared with cybrids with normal mitophagy, in cybrids with defective mitophagy, the secretion of all studied cytokines changed significantly both quantitatively and qualitatively. In particular, the secretion of 3 of 5 cytokines demonstrated an intolerant inflammatory response manifested by increased secretion after repeated inflammatory stimulation. Such an intolerant reaction likely indicates a significant disruption of the pro-inflammatory response of macrophages, which can contribute to the chronification of inflammation. Elucidating the mechanisms of chronification of inflammation is extremely important for the search for fundamentally new pharmacological targets and the development of drugs for the prevention and treatment of chronic inflammatory diseases, including atherosclerosis and diseases characteristic of inflammation. Such diseases account for up to 80% of morbidity and mortality.

5.
Curr Med Chem ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38879762

RESUMEN

BACKGROUND: Mitochondria are the main sites of cellular aerobic energy production through conjugation of respiration and oxidative phosphorylation. We have recently discovered mutations (genome variants) of mitochondrial DNA (mtDNA) associated with atherosclerosis. We have then investigated the possible mechanisms underlying such association and the role of mitochondrial mutations in atherogenesis. Mitochondrial dysfunction is a known component of the pathogenesis of chronic human diseases, including atherosclerosis. OBJECTIVE: The aim of the study was to explore whether there is a relationship between cellular oxygen consumption and atherosclerosis-associated mitochondrial mutations. The study of mitochondrial respiration abnormalities can help to understand the role of mtDNA mutations in pathology. METHOD: By using the polarographic method with Clark electrode, we tested the possibility of respiration impairment in permeabilized cells carrying the tested mtDNA variants using the cybrid (cytoplasmic hybrid) lines. Mitochondria introduced in the cybrid lines were obtained from atherosclerotic patients that differed in the profile of mtDNA mutations, which made it possible to compare the degree of mtDNA mutation load with the rate of oxygen consumption by cybrid cells. RESULTS: It was found that three of the studied mutations were individually associated with impaired respiration. Besides, some combinations of two specific mutations have a high probability of being associated with altered oxygen consumption. As a result, eight mutations were identified, individually or paired combinations of which were associated with high or low rates of cellular respiration, significantly different from control cells. CONCLUSION: The observed effect may be involved in the pathogenesis of atherosclerosis. The study of mtDNA mutations associated with atherosclerosis can help reveal pharmacological targets for the development of novel therapies.

6.
J Lipid Atheroscler ; 13(2): 166-183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38826184

RESUMEN

Objective: The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, pro-inflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis. Methods: The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TC-HSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Pro-inflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy. Results: In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation. Conclusion: The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.

7.
Curr Med Chem ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39185646

RESUMEN

BACKGROUND: Cells of different human organs and tissues contain different numbers of mitochondria. In these organelles, there are different copies of the mitochondrial genome, which is characteristic of a certain organ or tissue. OBJECTIVE: The aim of the investigation was to analyze the results of scientific works dedicated to the analysis of heteroplasmy levels of mitochondrial genome mutations in a number of organs and tissues. METHODS: Based on literature data, the level of heteroplasmy of mitochondrial genome mutations was analyzed in organs such as the liver, lungs, muscles, small intestine, large intestine, spleen, kidney, brain, heart, and hair. In addition, this parameter was studied in such tissues as leukocytes, buccal epithelium, and epithelial cells from urine. RESULTS: Significant differences in the mutational burden of the mitochondrial genome were found in various samples of organs and tissues. The highest heteroplasmy level for mtDNA mutations was in muscles; it was lower in buccal epithelium; and in human blood cells, the heteroplasmy level of mitochondrial mutations turned out to be significantly lower compared to other tissues. During the comparison of samples of patients with different diseases and healthy people, significant differences were found in the heteroplasmy level between some organs and tissues. CONCLUSION: The heteroplasmy level of mitochondrial genome mutations can significantly differ in the organs and tissues of individuals. In addition, in a number of literature sources, it is noted that there is a dependence on the mutational burden of the mitochondrial genome from the type of disease, sex, and age of a person.

8.
Life (Basel) ; 12(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36013333

RESUMEN

Chronic human diseases, especially age-related disorders, are often associated with chronic inflammation. It is currently not entirely clear what factors are responsible for the sterile inflammatory process becoming chronic in affected tissues. This process implies impairment of the normal resolution of the inflammatory response, when pro-inflammatory cytokine production ceases and tissue repair process begins. The important role of the mitochondria in the correct functioning of innate immune cells is currently well recognized, with mitochondrial signals being an important component of the inflammatory response regulation. In this work, we propose a hypothesis according to which mitochondrial DNA (mtDNA) mutations may play a key role in rendering certain cells prone to prolonged pro-inflammatory activation, therefore contributing to chronification of inflammation. The affected cells become sites of constant pro-inflammatory stimulation. The study of the distribution of atherosclerotic lesions on the surface of the arterial wall samples obtained from deceased patients revealed a focal distribution of lesions corresponding to the distribution of cells with altered morphology that are affected by mtDNA mutations. These observations support the proposed hypothesis and encourage further studies.

9.
Toxicol Rep ; 8: 499-504, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732625

RESUMEN

AIM: The aim of this work was to study the effect of telomere length in the chromosomes of nuclear blood cells in individuals with coronary heart disease (CHD) on the development of cardiovascular complications (CVC). MATERIALS AND METHODS: DNA was isolated from nuclear blood cells of 498 study participants. The telomere length was determined by real-time polymerase chain reaction. The investigation of each sample was repeated three times. Five years after the end of this study, a telephone survey of 119 patients with CHD was conducted in order to obtain data on the presence of CVC. RESULTS: According to the results obtained, a decrease in telomere length in patients with coronary heart disease increases the risk of subsequent development of cardiovascular complications. CONCLUSION: Patients with coronary heart disease with shorter telomeres compared with conventionally healthy study participants had an increased risk of cardiovascular complications within 5 years after telomere analysis.

10.
Curr Pharm Des ; 27(2): 177-184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32867647

RESUMEN

BACKGROUND: The present review article considers some chronic diseases of vascular and metabolic genesis, the causes of which may be mitochondrial dysfunction. Very often, in the long course of the disease, complications may occur, leading to myocardial infarction or ischemic stroke and, as a result, death. In particular, a large percentage of human deaths nowadays belongs to cardiovascular diseases, such as coronary heart disease (CHD), arterial hypertension, cardiomyopathies, and type 2 diabetes mellitus. OBJECTIVE: The aim of the present review was the analysis of literature sources, devoted to an investigation of a link of mitochondrial DNA mutations with chronic diseases of vascular and metabolic genesis. RESULTS: The analysis of literature indicates the association of the mitochondrial genome mutations with coronary heart disease, type 2 diabetes mellitus, hypertension, and various types of cardiomyopathies. CONCLUSION: The detected mutations can be used to analyze the predisposition to chronic diseases of vascular and metabolic genesis. They can also be used to create molecular-cell models necessary to evaluate the effectiveness of drugs developed for the treatment of these pathologies. MtDNA mutations associated with the absence of diseases of vascular and metabolic genesis could be potential candidates for gene therapy of the said diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , ADN Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Mitocondrias/genética , Mutación
11.
Data Brief ; 29: 105136, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32016144

RESUMEN

The search for variants of mitochondrial genome associated with atherosclerosis, in particular, with carotid intima-media thickness (cIMT), is necessary to understand the role of the damage of mitochondrial genome in the development of atherosclerosis. Such data can be useful to provide novel genetic markers of predisposition to atherosclerosis and molecular targets for further development of technologies aimed to prevent age-related degenerative pathologies. Data presented in this article demonstrate the association of several heteroplasmic variants of mitochondrial DNA (mtDNA) previously described as proatherogenic ones with cIMT in 251 participants (190 participants from Novosibirsk, Russia, and 61 participant from Almaty, Kazakhstan). It was shown that the occurrence of some variants of mitochondrial genome is different in samples derived from Russian and Kazakh populations; the level of mitochondrial heteroplasmy m.13513G > A correlates negatively with mean cIMT in both Russian and Kazakh participants.

12.
Life (Basel) ; 10(9)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842589

RESUMEN

The search for markers of predisposition to atherosclerosis development is very important for early identification of individuals with a high risk of cardiovascular disease. The aim of the present study was to investigate the association of mitochondrial DNA mutations with carotid intima-media thickness and to determine the impact of mitochondrial heteroplasmy measurements in the prognosis of atherosclerosis development. This cross-sectional, population-based study was conducted in 468 subjects from the Novosibirsk region. It was shown that the mean (carotid intima-media thickness) cIMT correlated with the following mtDNA mutations: m.15059G>A (r = 0.159, p = 0.001), m.12315G>A (r = 0.119; p = 0.011), m.5178C>A (r = 0.114, p = 0.014), and m.3256C>T (r = 0.130, p = 0.011); a negative correlation with mtDNA mutations m.14846G>A (r = -0.111, p = 0.042) and m.13513G>A (r = -0.133, p = 0.004) was observed. In the linear regression analysis, the addition of the set of mtDNA mutations to the conventional cardiovascular risk factors increased the ability to predict the cIMT variability from 17 to 27%. Multi-step linear regression analysis revealed the most important predictors of mean cIMT variability: age, systolic blood pressure, blood levels of total cholesterol, LDL and triglycerides, as well as the mtDNA mutations m.13513G>A, m.15059G>A, m.12315G>A, and m.3256C>T. Thus, a high predictive value of mtDNA mutations for cIMT variability was demonstrated. The association of mutation m.13513G>A and m.14846G>A with a low value of cIMT, demonstrated in several studies, represents a potential for the development of anti-atherosclerotic gene therapy.

13.
Curr Pharm Des ; 25(6): 693-699, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931844

RESUMEN

OBJECTIVE: In this review article, we analyzed the literature on the creation of cultures containing mutations associated with cardiovascular diseases (CVD) using transfection, transduction and editing of the human genome. METHODS: We described different methods of transfection, transduction and editing of the human genome, used in the literature. RESULTS: We reviewed the researches in which the creation of сell cultures containing mutations was described. According to the literature, system CRISPR/Cas9 proved to be the most preferred method for editing the genome. We found rather promising and interesting a practically undeveloped direction of mitochondria transfection using a gene gun. Such a gun can direct a genetically-engineered construct containing human DNA mutations to the mitochondria using heavy metal particles. However, in human molecular genetics, the transfection method using a gene gun is unfairly forgotten and is almost never used. Ethical problems arising from editing the human genome were also discussed in our review. We came to a conclusion that it is impossible to stop scientific and technical progress. It is important that the editing of the genome takes place under the strict control of society and does not bear dangerous consequences for humanity. To achieve this, the constant interaction of science with society, culture and business is necessary. CONCLUSION: The most promising methods for the creation of cell cultures containing mutations linked with cardiovascular diseases, were system CRISPR/Cas9 and the gene gun.


Asunto(s)
Enfermedades Cardiovasculares/genética , Edición Génica , Mutación , Transfección , Biolística , Sistemas CRISPR-Cas , Humanos , Mitocondrias/genética
14.
Biomolecules ; 9(9)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540444

RESUMEN

In the present work, a pilot creation of four cybrid cultures with high heteroplasmy level was performed using mitochondrial genome mutations m.12315G>A and m.1555G>A. According to data of our preliminary studies, the threshold heteroplasmy level of mutation m.12315G>A is associated with atherosclerosis. At the same time, for a mutation m.1555G>A, such a heteroplasmy level is associated with the absence of atherosclerosis. Cybrid cultures were created by fusion of rho0-cells and mitochondria from platelets with a high heteroplasmy level of the investigated mutations. To create rho0-cells, THP-1 culture of monocytic origin was taken. According to the results of the study, two cybrid cell lines containing mutation m.12315G>A with the heteroplasmy level above the threshold value (25% and 44%, respectively) were obtained. In addition, two cybrid cell lines containing mutation m.1555G>A with a high heteroplasmy level (24%) were obtained. Cybrid cultures with mtDNA mutation m.12315G>A can be used to model both the occurrence and development of atherosclerosis in cells and the titration of drug therapy for patients with atherosclerosis. With the help of cybrid cultures containing single nucleotide replacement of mitochondrial genome m.1555G>A, it is possible to develop approaches to the gene therapy of atherosclerosis.


Asunto(s)
Aterosclerosis/genética , Fusión Celular/métodos , Células Híbridas/citología , Mutación Puntual , ARN de Transferencia de Leucina/genética , Plaquetas/citología , Técnicas de Cultivo de Célula , Línea Celular , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Modelos Biológicos , Células THP-1
15.
Biomolecules ; 9(9)2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500189

RESUMEN

Mitochondrial dysfunction and oxidative stress are likely involved in atherogenesis. Since the mitochondrial genome variation can alter functional activity of cells, it is necessary to assess the presence in atherosclerotic lesions of mitochondrial DNA (mtDNA) heteroplasmic mutations known to be associated with different pathological processes and ageing. In this study, mtDNA heteroplasmy and copy number (mtCN) were evaluated in the autopsy-derived samples of aortic intima differing by the type of atherosclerotic lesions. To detect mtDNA heteroplasmic variants, next generation sequencing was used, and mtCN measurement was performed by qPCR. It was shown that mtDNA heteroplasmic mutations are characteristic for particular areas of intimal tissue; in 83 intimal samples 55 heteroplasmic variants were found; mean minor allele frequencies level accounted for 0.09, with 12% mean heteroplasmy level. The mtCN variance measured in adjacent areas of intima was high, but atherosclerotic lesions and unaffected intima did not differ significantly in mtCN values. Basing on the ratio of minor and major nucleotide mtDNA variants, we can conclude that there exists the increase in the number of heteroplasmic mtDNA variants, which corresponds to the extent of atherosclerotic morphologic phenotype.


Asunto(s)
Aorta Abdominal/metabolismo , Aterosclerosis/genética , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Anciano de 80 o más Años , Aorta Abdominal/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , ADN Mitocondrial/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación
16.
Ther Clin Risk Manag ; 14: 1933-1942, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349272

RESUMEN

There are several types of mitochondrial cytopathies, which cause a set of disorders, arise as a result of mitochondria's failure. Mitochondria's functional disruption leads to development of physical, growing and cognitive disabilities and includes multiple organ pathologies, essentially disturbing the nervous and muscular systems. The origins of mitochondrial cytopathies are mutations in genes of nuclear DNA encoding mitochondrial proteins or in mitochondrial DNA. Nowadays, numerous mtDNA mutations significant to the appearance and progress of pathologies in humans are detected. In this mini-review, we accent on the mitochondrial cytopathies related to mutations of mtDNA. As well known, there are definite set of symptoms of mitochondrial cytopathies distinguishing or similar for different syndromes. The present article contains data about mutations linked with cytopathies that facilitate diagnosis of different syndromes by using genetic analysis methods. In addition, for every individual, more effective therapeutic approach could be developed after wide-range mutant background analysis of mitochondrial genome.

17.
Oxid Med Cell Longev ; 2018: 4647214, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29983856

RESUMEN

Modelling of pathological processes in cells is one of the most sought-after technologies of the 21st century. Using models of such processes may help to study the pathogenetic mechanisms of various diseases. The aim of the present study was to analyse the literature, dedicated to obtaining and investigating cybrid models. Besides, the possibility of modeling pathological processes in cells and treatment of different diseases using the models was evaluated. Methods of obtaining Rho0 cell cultures showed that, during their creation, mainly a standard technique, based on the use of mtDNA replication inhibitors (ethidium bromide), was applied. Cybrid lines were usually obtained by PEG fusion. Most frequently, platelets acted as donors of mitochondria. According to the analysis of the literature data, cybrid cell cultures can be modeled to study the dysfunction of the mitochondrial genome and molecular cellular pathological processes. Such models can be very promising for the development of therapeutic approaches to the treatment of various human diseases.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Animales , ADN Mitocondrial/efectos de los fármacos , Etidio/farmacología , Genoma Mitocondrial/efectos de los fármacos , Células HEK293 , Humanos , Mutación/efectos de los fármacos , Mutación/genética
18.
Dis Markers ; 2018: 9749457, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670672

RESUMEN

Myocardial infarction is one of the clinical manifestations of coronary heart disease. In some cases, the cause of myocardial infarction may be atherosclerotic plaques which occurred in the human aorta. The association of mtDNA mutations with atherosclerotic lesions in human arteries was previously detected by our research group. In this study, we used samples of white blood cells collected from 225 patients with myocardial infarction and 239 control persons with no health complaints. DNA was isolated from the blood leukocyte samples. Then, PCR fragments of DNA were obtained. They contained the investigated regions of 11 mitochondrial genome mutations (m.5178C>A, m.3336T>C, m.652delG, m.12315G>A, m.14459G>A, m.652insG, m.14846G>A, m.13513G>A, m.1555A>G, m.15059G>A, m.3256C>T). According to the obtained results, three mutations of the human mitochondrial genome correlated with myocardial infarction. A positive correlation was observed for mutation m.5178C>A. At the same time, a highly significant negative correlation with myocardial infarction was observed for mutation m.14846G>A. One single-nucleotide substitution of m.12315G>A had a trend towards negative correlation. These mutations can potentially be useful for creating molecular/cellular models for studying the mechanisms of myocardial infarction and designing novel therapies. Moreover, these mutations can possibly be used for diagnostic purposes.


Asunto(s)
Genoma Mitocondrial , Mutación , Infarto del Miocardio/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/epidemiología
19.
Oxid Med Cell Longev ; 2017: 6934394, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28951770

RESUMEN

Mutations of mtDNA, due to their higher frequency of occurrence compared to nuclear DNA mutations, are the most promising biomarkers for assessing predisposition of the occurrence and development of atherogenesis. The aim of the present article was an analysis of correlation of several mitochondrial genome mutations with carotid atherosclerosis. Leukocytes from blood of study participants from Moscow polyclinics were used as research material. The sample size was 700 people. The sample members were diagnosed with "atherosclerosis" on the basis of ultrasonographic examination and biochemical and molecular cell tests. DNA was isolated from blood leukocyte samples of the study participants. PCR fragments of DNA, containing the region of 11 investigated mutations, were pyrosequenced. The heteroplasmy level of these mutations was detected. Statistical analysis of the obtained results was performed using the software package SPSS 22.0. According to the obtained results, an association of mutations m.652delG, m.3336C>T, m.12315G>A, m.14459G>A m.15059G>A with carotid atherosclerosis was found. These mutations can be biomarkers for assessing predisposition to this disease. Additionally, two single nucleotide substitutions (m.13513G>A and m.14846G>A), negatively correlating with atherosclerotic lesions, were detected. These mutations may be potential candidates for gene therapy of atherosclerosis and its risk factors.


Asunto(s)
Enfermedades de las Arterias Carótidas/genética , Genoma Mitocondrial , Mutación , Enfermedades de las Arterias Carótidas/patología , Estudios de Casos y Controles , Femenino , Humanos , Masculino
20.
Data Brief ; 7: 1570-5, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27222855

RESUMEN

This dataset report is dedicated to mitochondrial genome variants associated with asymptomatic atherosclerosis. These data were obtained using the method of next generation pyrosequencing (NGPS). The whole mitochondrial genome of the sample of patients from the Moscow region was analyzed. In this article the dataset including anthropometric, biochemical and clinical parameters along with detected mtDNA variants in patients with carotid atherosclerosis and healthy individuals was presented. Among 58 of the most common homoplasmic mtDNA variants found in the observed sample, 7 variants occurred more often in patients with atherosclerosis and 16 variants occurred more often in healthy individuals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA