Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 16(1): 155, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28927409

RESUMEN

BACKGROUND: Lactobacillus species produce biosurfactants that can contribute to the bacteria's ability to prevent microbial infections associated with urogenital and gastrointestinal tracts and the skin. Here, we described the biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. RESULTS: The biosurfactants produced by L. jensenii P6A and L. gasseri P65 reduced the water surface tension from 72 to 43.2 mN m-1 and 42.5 mN m-1 as their concentration increased up to the critical micelle concentration (CMC) values of 7.1 and 8.58 mg mL-1, respectively. Maximum emulsifying activity was obtained at concentrations of 1 and 5 mg mL-1 for the P6A and P65 strains, respectively. The Fourier transform infrared spectroscopy data revealed that the biomolecules consist of a mixture of carbohydrates, lipids and proteins. The gas chromatography-mass spectrum analysis of L. jensenii P6A biosurfactant showed a major peak for 14-methypentadecanoic acid, which was the main fatty acid present in the biomolecule; conversely, eicosanoic acid dominated the biosurfactant produced by L. gasseri P65. Although both biosurfactants contain different percentages of the sugars galactose, glucose and ribose; rhamnose was only detected in the biomolecule produced by L. jensenii P6A. Emulsifying activities were stable after a 60-min incubation at 100 °C, at pH 2-10, and after the addition of potassium chloride and sodium bicarbonate, but not in the presence of sodium chloride. The biomolecules showed antimicrobial activity against clinical isolates of Escherichia coli and Candida albicans, with MIC values of 16 µg mL-1, and against Staphylococcus saprophyticus, Enterobacter aerogenes and Klebsiella pneumoniae at 128 µg mL-1. The biosurfactants also disrupted preformed biofilms of microorganisms at varying concentrations, being more efficient against E. aerogenes (64%) (P6A biosurfactant), and E. coli (46.4%) and S. saprophyticus (39%) (P65 biosurfactant). Both strains of lactobacilli could also co-aggregate pathogens. CONCLUSIONS: This report presents the first characterization of biosurfactants produced by L. jensenii P6A and L. gasseri P65. The antimicrobial properties and stability of these biomolecules indicate their potential use as alternative antimicrobial agents in the medical field for applications against pathogens that are responsible for infections in the gastrointestinal and urogenital tracts and the skin.


Asunto(s)
Lactobacillus gasseri/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Infecciones Bacterianas/microbiología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Lactobacillus/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Tensoactivos/farmacología
2.
Bioresour Technol ; 128: 646-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23220111

RESUMEN

A strain of Pseudomonas aeruginosa isolated from a site contaminated with refined oil products exhibited demulsification capabilities against Tween 80-Span 80 stabilized oil-in-water (O/W), Tween 80-stabilized water-in-oil (W/O) model emulsions (kerosene-water), and an industrial emulsion (Daido Dairoll PA-5A). GC-MS analysis confirmed the presence of fatty acids and carbohydrates in the extracellular biodemulsifier. The demulsifying activity of cells and culture supernatants was favored by growth in media containing 1% diesel oil. There was a correlation between culture age, de-emulsification and cellular hydrophobicity, and highest activities were observed for cells and supernatants from 96-h cultures. Activity increased with addition of up to 60 mg cells or 300 µL supernatant to emulsions. The activity was relatively stable at 20-40 °C and to freezing, but was reduced by 69% by washing the cells with chloroform-methanol-water. This demulsifier has potential for application in biotreatment of emulsified oily wastewaters to promote recovery and/or degradation of oil.


Asunto(s)
Aceites Industriales/microbiología , Pseudomonas aeruginosa/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/química , Contaminantes del Suelo/aislamiento & purificación , Biodegradación Ambiental , Emulsiones/química , Emulsiones/metabolismo , Pseudomonas aeruginosa/clasificación , Especificidad de la Especie
3.
Bioresour Technol ; 101(14): 5186-93, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20231088

RESUMEN

New bioemulsifier-producing yeasts were isolated from the biological wastewater treatment plant of a dairy industry. Of the 31 bioemulsifier-producing strains, 12 showed emulsifying activity after 2months of incubation, with E(24) values ranging from 7% to 78%. However, only Trichosporon loubieri CLV20, Geotrichum sp. CLOA40, and T. montevideense CLOA70 exhibited high emulsion-stabilizing capacity, with E(24) values of 78%, 67%, and 66%, respectively. These isolates were shown to induce a strong emulsion stabilizing activity rather than the reduction of the interfacial tension. These strains exhibited similar growth rates in the exponential growth phase, with a clear acceleration after 24h and stabilization of the activity after 144h. Emulsification and stability properties of the bioemulsifiers were compared to those of commercial surfactants after the addition of NaCl and exposure to temperature of 100 degrees C. The compounds produced by the isolates appeared to be lipid-polysaccharide complexes. Gas chromatograph analysis of the lipidic fraction of the bioemulsifiers from CLV20, CLOA40, and CLOA70 shows the prevalence of (9Z,12Z)-octadeca-9,12-dienoic acid, in concentrations of 42.8%, 25.9%, and 49.8%, respectively. The carbohydrate composition, as determined by GC-MS of their alditol acetate derivatives, showed a predominance of mannose, galactose, xylose and arabinose.


Asunto(s)
Industria Lechera/métodos , Emulsiones/química , Purificación del Agua/métodos , Cromatografía de Gases/métodos , ADN Intergénico , Genes Fúngicos , Geotrichum/genética , Residuos Industriales , Industrias , Cinética , Espectrometría de Masas/métodos , Reacción en Cadena de la Polimerasa , Temperatura , Trichosporon/genética , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA